{"title":"1957年至2021年,瑞典斯堪尼亚不同空间尺度的植物多样性损失幅度和驱动因素不同","authors":"Yasmine Karlsmo Kindlund, Torbjörn Tyler","doi":"10.1111/avsc.12730","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Questions</h3>\n \n <p>Changed land use, nitrogen deposition, climate change, and the spread of non-native species have repeatedly been reported as the main drivers of recent floristic changes in northern Europe. However, the relevance of the geographical scale at which floristic changes are observed is less well understood and it has only rarely been possible to quantify biodiversity loss. Therefore, we assessed changes in species richness, species composition and mean ecological indicator values (EIVs) at three nested geographic scales during two different time periods, each ca 30 years, since the mid-1900s.</p>\n </section>\n \n <section>\n \n <h3> Location</h3>\n \n <p>Two parishes in central Scania, southernmost Sweden.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We analyzed species presence/absence data from three inventories at ca 30-year intervals over 1957–2021 and three geographic scales (157 m<sup>2</sup>, ca 7 km<sup>2</sup> and ca 45 km<sup>2</sup>) to document temporal trends and differences between geographic scales in terms of species richness, species composition and mean EIVs.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>We found shifts in species composition across all geographical scales. However, the magnitude of biodiversity loss and the main drivers of these changes were scale-dependent. At the smallest spatial scale, we saw a dramatic loss of plant biodiversity with local species richness in 2021 being only 48% of that of 1960. In contrast, at the larger geographic scales no significant changes in species richness were observed because species losses were compensated for by gains of predominantly non-native species, which made up at least 78% of the new species richness. At the smallest spatial scale, changed land use (ceased grazing/mowing and intensified forestry) appeared as the main driver, while an increasing proportion of non-native species, as well as climatic changes and increasing nitrogen loads appeared relatively more important at larger geographic scales.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>Our results highlight the precarious situation for biodiversity in the region and at the same time the fundamental importance of geographic scale in studies of biodiversity change. Both the magnitude and drivers of changes may differ depending on the geographic scale and must be considered also when previously published studies are interpreted.</p>\n </section>\n </div>","PeriodicalId":55494,"journal":{"name":"Applied Vegetation Science","volume":"26 2","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/avsc.12730","citationCount":"0","resultStr":"{\"title\":\"Magnitude and drivers of plant diversity loss differ between spatial scales in Scania, Sweden 1957–2021\",\"authors\":\"Yasmine Karlsmo Kindlund, Torbjörn Tyler\",\"doi\":\"10.1111/avsc.12730\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Questions</h3>\\n \\n <p>Changed land use, nitrogen deposition, climate change, and the spread of non-native species have repeatedly been reported as the main drivers of recent floristic changes in northern Europe. However, the relevance of the geographical scale at which floristic changes are observed is less well understood and it has only rarely been possible to quantify biodiversity loss. Therefore, we assessed changes in species richness, species composition and mean ecological indicator values (EIVs) at three nested geographic scales during two different time periods, each ca 30 years, since the mid-1900s.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Location</h3>\\n \\n <p>Two parishes in central Scania, southernmost Sweden.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>We analyzed species presence/absence data from three inventories at ca 30-year intervals over 1957–2021 and three geographic scales (157 m<sup>2</sup>, ca 7 km<sup>2</sup> and ca 45 km<sup>2</sup>) to document temporal trends and differences between geographic scales in terms of species richness, species composition and mean EIVs.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>We found shifts in species composition across all geographical scales. However, the magnitude of biodiversity loss and the main drivers of these changes were scale-dependent. At the smallest spatial scale, we saw a dramatic loss of plant biodiversity with local species richness in 2021 being only 48% of that of 1960. In contrast, at the larger geographic scales no significant changes in species richness were observed because species losses were compensated for by gains of predominantly non-native species, which made up at least 78% of the new species richness. At the smallest spatial scale, changed land use (ceased grazing/mowing and intensified forestry) appeared as the main driver, while an increasing proportion of non-native species, as well as climatic changes and increasing nitrogen loads appeared relatively more important at larger geographic scales.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusion</h3>\\n \\n <p>Our results highlight the precarious situation for biodiversity in the region and at the same time the fundamental importance of geographic scale in studies of biodiversity change. Both the magnitude and drivers of changes may differ depending on the geographic scale and must be considered also when previously published studies are interpreted.</p>\\n </section>\\n </div>\",\"PeriodicalId\":55494,\"journal\":{\"name\":\"Applied Vegetation Science\",\"volume\":\"26 2\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/avsc.12730\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Vegetation Science\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/avsc.12730\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Vegetation Science","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/avsc.12730","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
Magnitude and drivers of plant diversity loss differ between spatial scales in Scania, Sweden 1957–2021
Questions
Changed land use, nitrogen deposition, climate change, and the spread of non-native species have repeatedly been reported as the main drivers of recent floristic changes in northern Europe. However, the relevance of the geographical scale at which floristic changes are observed is less well understood and it has only rarely been possible to quantify biodiversity loss. Therefore, we assessed changes in species richness, species composition and mean ecological indicator values (EIVs) at three nested geographic scales during two different time periods, each ca 30 years, since the mid-1900s.
Location
Two parishes in central Scania, southernmost Sweden.
Methods
We analyzed species presence/absence data from three inventories at ca 30-year intervals over 1957–2021 and three geographic scales (157 m2, ca 7 km2 and ca 45 km2) to document temporal trends and differences between geographic scales in terms of species richness, species composition and mean EIVs.
Results
We found shifts in species composition across all geographical scales. However, the magnitude of biodiversity loss and the main drivers of these changes were scale-dependent. At the smallest spatial scale, we saw a dramatic loss of plant biodiversity with local species richness in 2021 being only 48% of that of 1960. In contrast, at the larger geographic scales no significant changes in species richness were observed because species losses were compensated for by gains of predominantly non-native species, which made up at least 78% of the new species richness. At the smallest spatial scale, changed land use (ceased grazing/mowing and intensified forestry) appeared as the main driver, while an increasing proportion of non-native species, as well as climatic changes and increasing nitrogen loads appeared relatively more important at larger geographic scales.
Conclusion
Our results highlight the precarious situation for biodiversity in the region and at the same time the fundamental importance of geographic scale in studies of biodiversity change. Both the magnitude and drivers of changes may differ depending on the geographic scale and must be considered also when previously published studies are interpreted.
期刊介绍:
Applied Vegetation Science focuses on community-level topics relevant to human interaction with vegetation, including global change, nature conservation, nature management, restoration of plant communities and of natural habitats, and the planning of semi-natural and urban landscapes. Vegetation survey, modelling and remote-sensing applications are welcome. Papers on vegetation science which do not fit to this scope (do not have an applied aspect and are not vegetation survey) should be directed to our associate journal, the Journal of Vegetation Science. Both journals publish papers on the ecology of a single species only if it plays a key role in structuring plant communities.