电化学还原法测定天然水中二甲基亚砜

IF 2.1 3区 地球科学 Q2 LIMNOLOGY
Ross McCulloch, Philippe Tortell
{"title":"电化学还原法测定天然水中二甲基亚砜","authors":"Ross McCulloch,&nbsp;Philippe Tortell","doi":"10.1002/lom3.10562","DOIUrl":null,"url":null,"abstract":"<p>A highly specific electrochemical reduction method has been developed that enables the trace level measurement of dimethyl sulfoxide (DMSO) concentration in natural waters. Following the sparging of native dimethyl sulfide (DMS) from the sample, DMSO is reduced to DMS using a novel electrochemical workflow that relies upon CuSO<sub>4</sub> as a redox mediator. The DMS produced through DMSO reduction is collected, concentrated, and detected using a previously described Purge &amp; Trap-Atmospheric Pressure Chemical Ionization-Tandem Mass Spectrometry (P&amp;T-APCI-MS/MS) analytical workflow. The method provides a 0.5 pM detection limit for the analysis of DMSO in 10 mL sample volumes, with a demonstrated method precision of 5.4% for the analysis of consecutive 10 nM aqueous standards. The method selectivity for DMSO was evaluated using a range of commonly observed marine organosulfur compounds, none of which were found to interfere with the analysis at a reduction potential of 4 V. Method intercomparison confirmed that the electrochemical reduction provides results that are equivalent (at the 95% confidence level) to an established TiCl<sub>3</sub> reduction protocol for the analysis of both freshwater and seawater samples. Relative to established methods of DMSO reduction, the electrochemical method provides excellent selectivity and reproducibility, and offers the potential for automated, high-throughput analysis. In addition, the new electrochemical method does not require expensive, difficult to procure enzymes or hazardous, corrosive chemical reagents. Depth profile measurements of DMSO, DMS, and dimethylsulfoniopropionate (DMSP) for unfiltered seawater samples collected in Saanich Inlet, a coastal fjord in British Columbia, demonstrate the effectiveness of the DMSO reduction method in an oceanographic context.</p>","PeriodicalId":18145,"journal":{"name":"Limnology and Oceanography: Methods","volume":"21 9","pages":"529-541"},"PeriodicalIF":2.1000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lom3.10562","citationCount":"0","resultStr":"{\"title\":\"The determination of dimethyl sulfoxide in natural waters using electrochemical reduction\",\"authors\":\"Ross McCulloch,&nbsp;Philippe Tortell\",\"doi\":\"10.1002/lom3.10562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A highly specific electrochemical reduction method has been developed that enables the trace level measurement of dimethyl sulfoxide (DMSO) concentration in natural waters. Following the sparging of native dimethyl sulfide (DMS) from the sample, DMSO is reduced to DMS using a novel electrochemical workflow that relies upon CuSO<sub>4</sub> as a redox mediator. The DMS produced through DMSO reduction is collected, concentrated, and detected using a previously described Purge &amp; Trap-Atmospheric Pressure Chemical Ionization-Tandem Mass Spectrometry (P&amp;T-APCI-MS/MS) analytical workflow. The method provides a 0.5 pM detection limit for the analysis of DMSO in 10 mL sample volumes, with a demonstrated method precision of 5.4% for the analysis of consecutive 10 nM aqueous standards. The method selectivity for DMSO was evaluated using a range of commonly observed marine organosulfur compounds, none of which were found to interfere with the analysis at a reduction potential of 4 V. Method intercomparison confirmed that the electrochemical reduction provides results that are equivalent (at the 95% confidence level) to an established TiCl<sub>3</sub> reduction protocol for the analysis of both freshwater and seawater samples. Relative to established methods of DMSO reduction, the electrochemical method provides excellent selectivity and reproducibility, and offers the potential for automated, high-throughput analysis. In addition, the new electrochemical method does not require expensive, difficult to procure enzymes or hazardous, corrosive chemical reagents. Depth profile measurements of DMSO, DMS, and dimethylsulfoniopropionate (DMSP) for unfiltered seawater samples collected in Saanich Inlet, a coastal fjord in British Columbia, demonstrate the effectiveness of the DMSO reduction method in an oceanographic context.</p>\",\"PeriodicalId\":18145,\"journal\":{\"name\":\"Limnology and Oceanography: Methods\",\"volume\":\"21 9\",\"pages\":\"529-541\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lom3.10562\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Limnology and Oceanography: Methods\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/lom3.10562\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"LIMNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Limnology and Oceanography: Methods","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/lom3.10562","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LIMNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

已经开发了一种高度特异性的电化学还原方法,该方法能够对天然水中的二甲基亚砜(DMSO)浓度进行痕量测量。从样品中喷射天然二甲基硫醚(DMS)后,使用依赖CuSO4作为氧化还原介质的新型电化学工作流程将DMSO还原为DMS。通过DMSO还原产生的DMS被收集、浓缩,并使用先前描述的Purge&;Trap常压化学电离串联质谱(P&;T-APCI-MS/MS)分析工作流程。该方法提供0.5 用于分析10中DMSO的pM检测极限 mL样品体积,连续10次分析的方法精度为5.4% nM水性标准品。使用一系列常见的海洋有机硫化合物评估DMSO的方法选择性,在还原电位为4时,没有发现任何化合物干扰分析 V.方法相互比较证实,电化学还原提供的结果相当于(在95%置信水平下)用于淡水和海水样品分析的既定TiCl3还原方案。相对于已建立的DMSO还原方法,电化学方法提供了优异的选择性和再现性,并提供了自动化、高通量分析的潜力。此外,新的电化学方法不需要昂贵、难以获得的酶或危险的腐蚀性化学试剂。在不列颠哥伦比亚省沿海峡湾萨尼奇湾采集的未经过滤的海水样本中,对二甲基亚砜、二甲基亚磺酸和二甲基亚磺基丙酸酯(DMSP)的深度剖面测量表明,在海洋学背景下,二甲基亚硫酸酯还原方法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The determination of dimethyl sulfoxide in natural waters using electrochemical reduction

The determination of dimethyl sulfoxide in natural waters using electrochemical reduction

A highly specific electrochemical reduction method has been developed that enables the trace level measurement of dimethyl sulfoxide (DMSO) concentration in natural waters. Following the sparging of native dimethyl sulfide (DMS) from the sample, DMSO is reduced to DMS using a novel electrochemical workflow that relies upon CuSO4 as a redox mediator. The DMS produced through DMSO reduction is collected, concentrated, and detected using a previously described Purge & Trap-Atmospheric Pressure Chemical Ionization-Tandem Mass Spectrometry (P&T-APCI-MS/MS) analytical workflow. The method provides a 0.5 pM detection limit for the analysis of DMSO in 10 mL sample volumes, with a demonstrated method precision of 5.4% for the analysis of consecutive 10 nM aqueous standards. The method selectivity for DMSO was evaluated using a range of commonly observed marine organosulfur compounds, none of which were found to interfere with the analysis at a reduction potential of 4 V. Method intercomparison confirmed that the electrochemical reduction provides results that are equivalent (at the 95% confidence level) to an established TiCl3 reduction protocol for the analysis of both freshwater and seawater samples. Relative to established methods of DMSO reduction, the electrochemical method provides excellent selectivity and reproducibility, and offers the potential for automated, high-throughput analysis. In addition, the new electrochemical method does not require expensive, difficult to procure enzymes or hazardous, corrosive chemical reagents. Depth profile measurements of DMSO, DMS, and dimethylsulfoniopropionate (DMSP) for unfiltered seawater samples collected in Saanich Inlet, a coastal fjord in British Columbia, demonstrate the effectiveness of the DMSO reduction method in an oceanographic context.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
3.70%
发文量
56
审稿时长
3 months
期刊介绍: Limnology and Oceanography: Methods (ISSN 1541-5856) is a companion to ASLO''s top-rated journal Limnology and Oceanography, and articles are held to the same high standards. In order to provide the most rapid publication consistent with high standards, Limnology and Oceanography: Methods appears in electronic format only, and the entire submission and review system is online. Articles are posted as soon as they are accepted and formatted for publication. Limnology and Oceanography: Methods will consider manuscripts whose primary focus is methodological, and that deal with problems in the aquatic sciences. Manuscripts may present new measurement equipment, techniques for analyzing observations or samples, methods for understanding and interpreting information, analyses of metadata to examine the effectiveness of approaches, invited and contributed reviews and syntheses, and techniques for communicating and teaching in the aquatic sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信