{"title":"迹von Neumann代数的一个证明论元定理","authors":"Liviu Păunescu, Andrei Sipoş","doi":"10.1002/malq.202200048","DOIUrl":null,"url":null,"abstract":"<p>We adapt a continuous logic axiomatization of tracial von Neumann algebras due to Farah, Hart and Sherman in order to prove a metatheorem for this class of structures in the style of proof mining, a research programme that aims to obtain the hidden computational content of ordinary mathematical proofs using tools from proof theory.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A proof-theoretic metatheorem for tracial von Neumann algebras\",\"authors\":\"Liviu Păunescu, Andrei Sipoş\",\"doi\":\"10.1002/malq.202200048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We adapt a continuous logic axiomatization of tracial von Neumann algebras due to Farah, Hart and Sherman in order to prove a metatheorem for this class of structures in the style of proof mining, a research programme that aims to obtain the hidden computational content of ordinary mathematical proofs using tools from proof theory.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/malq.202200048\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202200048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
我们采用Farah、Hart和Sherman提出的tracil von Neumann代数的连续逻辑公理化,以证明挖掘的形式证明这类结构的元定理,这是一个旨在使用证明理论工具获得普通数学证明的隐藏计算内容的研究计划。
A proof-theoretic metatheorem for tracial von Neumann algebras
We adapt a continuous logic axiomatization of tracial von Neumann algebras due to Farah, Hart and Sherman in order to prove a metatheorem for this class of structures in the style of proof mining, a research programme that aims to obtain the hidden computational content of ordinary mathematical proofs using tools from proof theory.