{"title":"迹von Neumann代数的一个证明论元定理","authors":"Liviu Păunescu, Andrei Sipoş","doi":"10.1002/malq.202200048","DOIUrl":null,"url":null,"abstract":"<p>We adapt a continuous logic axiomatization of tracial von Neumann algebras due to Farah, Hart and Sherman in order to prove a metatheorem for this class of structures in the style of proof mining, a research programme that aims to obtain the hidden computational content of ordinary mathematical proofs using tools from proof theory.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":"69 1","pages":"63-76"},"PeriodicalIF":0.4000,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A proof-theoretic metatheorem for tracial von Neumann algebras\",\"authors\":\"Liviu Păunescu, Andrei Sipoş\",\"doi\":\"10.1002/malq.202200048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We adapt a continuous logic axiomatization of tracial von Neumann algebras due to Farah, Hart and Sherman in order to prove a metatheorem for this class of structures in the style of proof mining, a research programme that aims to obtain the hidden computational content of ordinary mathematical proofs using tools from proof theory.</p>\",\"PeriodicalId\":49864,\"journal\":{\"name\":\"Mathematical Logic Quarterly\",\"volume\":\"69 1\",\"pages\":\"63-76\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Logic Quarterly\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/malq.202200048\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Logic Quarterly","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202200048","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 1
摘要
我们采用Farah、Hart和Sherman提出的tracil von Neumann代数的连续逻辑公理化,以证明挖掘的形式证明这类结构的元定理,这是一个旨在使用证明理论工具获得普通数学证明的隐藏计算内容的研究计划。
A proof-theoretic metatheorem for tracial von Neumann algebras
We adapt a continuous logic axiomatization of tracial von Neumann algebras due to Farah, Hart and Sherman in order to prove a metatheorem for this class of structures in the style of proof mining, a research programme that aims to obtain the hidden computational content of ordinary mathematical proofs using tools from proof theory.
期刊介绍:
Mathematical Logic Quarterly publishes original contributions on mathematical logic and foundations of mathematics and related areas, such as general logic, model theory, recursion theory, set theory, proof theory and constructive mathematics, algebraic logic, nonstandard models, and logical aspects of theoretical computer science.