{"title":"集合论和类理论中的子集关系和二层句","authors":"Zachiri McKenzie","doi":"10.1002/malq.202200029","DOIUrl":null,"url":null,"abstract":"<p>Hamkins and Kikuchi (2016, 2017) show that in both set theory and class theory the definable subset ordering of the universe interprets a complete and decidable theory. This paper identifies the minimum subsystem of <math>\n <semantics>\n <mi>ZF</mi>\n <annotation>$\\mathsf {ZF}$</annotation>\n </semantics></math>, <math>\n <semantics>\n <mi>BAS</mi>\n <annotation>$\\mathsf {BAS}$</annotation>\n </semantics></math>, that ensures that the definable subset ordering of the universe interprets a complete theory, and classifies the structures that can be realised as the subset relation in a model of this set theory. Extending and refining Hamkins and Kikuchi's result for class theory, a complete extension, <math>\n <semantics>\n <msub>\n <mi>IABA</mi>\n <mi>Ideal</mi>\n </msub>\n <annotation>$\\mathsf {IABA}_{\\mathsf {Ideal}}$</annotation>\n </semantics></math>, of the theory of infinite atomic boolean algebras and a minimum subsystem, <math>\n <semantics>\n <msup>\n <mi>BAC</mi>\n <mo>+</mo>\n </msup>\n <annotation>$\\mathsf {BAC}^+$</annotation>\n </semantics></math>, of <math>\n <semantics>\n <mi>NBG</mi>\n <annotation>$\\mathsf {NBG}$</annotation>\n </semantics></math> are identified with the property that if <math>\n <semantics>\n <mi>M</mi>\n <annotation>$\\mathcal {M}$</annotation>\n </semantics></math> is a model of <math>\n <semantics>\n <msup>\n <mi>BAC</mi>\n <mo>+</mo>\n </msup>\n <annotation>$\\mathsf {BAC}^+$</annotation>\n </semantics></math>, then <math>\n <semantics>\n <mrow>\n <mo>⟨</mo>\n <mi>M</mi>\n <mo>,</mo>\n <msup>\n <mi>S</mi>\n <mi>M</mi>\n </msup>\n <mo>,</mo>\n <msup>\n <mo>⊆</mo>\n <mi>M</mi>\n </msup>\n <mo>⟩</mo>\n </mrow>\n <annotation>$\\langle M, \\mathcal {S}^\\mathcal {M}, \\subseteq ^\\mathcal {M} \\rangle$</annotation>\n </semantics></math> is a model of <math>\n <semantics>\n <msub>\n <mi>IABA</mi>\n <mi>Ideal</mi>\n </msub>\n <annotation>$\\mathsf {IABA}_{\\mathsf {Ideal}}$</annotation>\n </semantics></math>, where <i>M</i> is the underlying set of <math>\n <semantics>\n <mi>M</mi>\n <annotation>$\\mathcal {M}$</annotation>\n </semantics></math>, <math>\n <semantics>\n <msup>\n <mi>S</mi>\n <mi>M</mi>\n </msup>\n <annotation>$\\mathcal {S}^\\mathcal {M}$</annotation>\n </semantics></math> is the unary predicate that distinguishes sets from classes and <math>\n <semantics>\n <msup>\n <mo>⊆</mo>\n <mi>M</mi>\n </msup>\n <annotation>$\\subseteq ^\\mathcal {M}$</annotation>\n </semantics></math> is the definable subset relation. These results are used to show that that <math>\n <semantics>\n <mi>BAS</mi>\n <annotation>$\\mathsf {BAS}$</annotation>\n </semantics></math> decides every 2-stratified sentence of set theory and <math>\n <semantics>\n <msup>\n <mi>BAC</mi>\n <mo>+</mo>\n </msup>\n <annotation>$\\mathsf {BAC}^+$</annotation>\n </semantics></math> decides every 2-stratified sentence of class theory.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The subset relation and 2-stratified sentences in set theory and class theory\",\"authors\":\"Zachiri McKenzie\",\"doi\":\"10.1002/malq.202200029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Hamkins and Kikuchi (2016, 2017) show that in both set theory and class theory the definable subset ordering of the universe interprets a complete and decidable theory. This paper identifies the minimum subsystem of <math>\\n <semantics>\\n <mi>ZF</mi>\\n <annotation>$\\\\mathsf {ZF}$</annotation>\\n </semantics></math>, <math>\\n <semantics>\\n <mi>BAS</mi>\\n <annotation>$\\\\mathsf {BAS}$</annotation>\\n </semantics></math>, that ensures that the definable subset ordering of the universe interprets a complete theory, and classifies the structures that can be realised as the subset relation in a model of this set theory. Extending and refining Hamkins and Kikuchi's result for class theory, a complete extension, <math>\\n <semantics>\\n <msub>\\n <mi>IABA</mi>\\n <mi>Ideal</mi>\\n </msub>\\n <annotation>$\\\\mathsf {IABA}_{\\\\mathsf {Ideal}}$</annotation>\\n </semantics></math>, of the theory of infinite atomic boolean algebras and a minimum subsystem, <math>\\n <semantics>\\n <msup>\\n <mi>BAC</mi>\\n <mo>+</mo>\\n </msup>\\n <annotation>$\\\\mathsf {BAC}^+$</annotation>\\n </semantics></math>, of <math>\\n <semantics>\\n <mi>NBG</mi>\\n <annotation>$\\\\mathsf {NBG}$</annotation>\\n </semantics></math> are identified with the property that if <math>\\n <semantics>\\n <mi>M</mi>\\n <annotation>$\\\\mathcal {M}$</annotation>\\n </semantics></math> is a model of <math>\\n <semantics>\\n <msup>\\n <mi>BAC</mi>\\n <mo>+</mo>\\n </msup>\\n <annotation>$\\\\mathsf {BAC}^+$</annotation>\\n </semantics></math>, then <math>\\n <semantics>\\n <mrow>\\n <mo>⟨</mo>\\n <mi>M</mi>\\n <mo>,</mo>\\n <msup>\\n <mi>S</mi>\\n <mi>M</mi>\\n </msup>\\n <mo>,</mo>\\n <msup>\\n <mo>⊆</mo>\\n <mi>M</mi>\\n </msup>\\n <mo>⟩</mo>\\n </mrow>\\n <annotation>$\\\\langle M, \\\\mathcal {S}^\\\\mathcal {M}, \\\\subseteq ^\\\\mathcal {M} \\\\rangle$</annotation>\\n </semantics></math> is a model of <math>\\n <semantics>\\n <msub>\\n <mi>IABA</mi>\\n <mi>Ideal</mi>\\n </msub>\\n <annotation>$\\\\mathsf {IABA}_{\\\\mathsf {Ideal}}$</annotation>\\n </semantics></math>, where <i>M</i> is the underlying set of <math>\\n <semantics>\\n <mi>M</mi>\\n <annotation>$\\\\mathcal {M}$</annotation>\\n </semantics></math>, <math>\\n <semantics>\\n <msup>\\n <mi>S</mi>\\n <mi>M</mi>\\n </msup>\\n <annotation>$\\\\mathcal {S}^\\\\mathcal {M}$</annotation>\\n </semantics></math> is the unary predicate that distinguishes sets from classes and <math>\\n <semantics>\\n <msup>\\n <mo>⊆</mo>\\n <mi>M</mi>\\n </msup>\\n <annotation>$\\\\subseteq ^\\\\mathcal {M}$</annotation>\\n </semantics></math> is the definable subset relation. These results are used to show that that <math>\\n <semantics>\\n <mi>BAS</mi>\\n <annotation>$\\\\mathsf {BAS}$</annotation>\\n </semantics></math> decides every 2-stratified sentence of set theory and <math>\\n <semantics>\\n <msup>\\n <mi>BAC</mi>\\n <mo>+</mo>\\n </msup>\\n <annotation>$\\\\mathsf {BAC}^+$</annotation>\\n </semantics></math> decides every 2-stratified sentence of class theory.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/malq.202200029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202200029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The subset relation and 2-stratified sentences in set theory and class theory
Hamkins and Kikuchi (2016, 2017) show that in both set theory and class theory the definable subset ordering of the universe interprets a complete and decidable theory. This paper identifies the minimum subsystem of , , that ensures that the definable subset ordering of the universe interprets a complete theory, and classifies the structures that can be realised as the subset relation in a model of this set theory. Extending and refining Hamkins and Kikuchi's result for class theory, a complete extension, , of the theory of infinite atomic boolean algebras and a minimum subsystem, , of are identified with the property that if is a model of , then is a model of , where M is the underlying set of , is the unary predicate that distinguishes sets from classes and is the definable subset relation. These results are used to show that that decides every 2-stratified sentence of set theory and decides every 2-stratified sentence of class theory.