集合论和类理论中的子集关系和二层句

Pub Date : 2023-05-28 DOI:10.1002/malq.202200029
Zachiri McKenzie
{"title":"集合论和类理论中的子集关系和二层句","authors":"Zachiri McKenzie","doi":"10.1002/malq.202200029","DOIUrl":null,"url":null,"abstract":"<p>Hamkins and Kikuchi (2016, 2017) show that in both set theory and class theory the definable subset ordering of the universe interprets a complete and decidable theory. This paper identifies the minimum subsystem of <math>\n <semantics>\n <mi>ZF</mi>\n <annotation>$\\mathsf {ZF}$</annotation>\n </semantics></math>, <math>\n <semantics>\n <mi>BAS</mi>\n <annotation>$\\mathsf {BAS}$</annotation>\n </semantics></math>, that ensures that the definable subset ordering of the universe interprets a complete theory, and classifies the structures that can be realised as the subset relation in a model of this set theory. Extending and refining Hamkins and Kikuchi's result for class theory, a complete extension, <math>\n <semantics>\n <msub>\n <mi>IABA</mi>\n <mi>Ideal</mi>\n </msub>\n <annotation>$\\mathsf {IABA}_{\\mathsf {Ideal}}$</annotation>\n </semantics></math>, of the theory of infinite atomic boolean algebras and a minimum subsystem, <math>\n <semantics>\n <msup>\n <mi>BAC</mi>\n <mo>+</mo>\n </msup>\n <annotation>$\\mathsf {BAC}^+$</annotation>\n </semantics></math>, of <math>\n <semantics>\n <mi>NBG</mi>\n <annotation>$\\mathsf {NBG}$</annotation>\n </semantics></math> are identified with the property that if <math>\n <semantics>\n <mi>M</mi>\n <annotation>$\\mathcal {M}$</annotation>\n </semantics></math> is a model of <math>\n <semantics>\n <msup>\n <mi>BAC</mi>\n <mo>+</mo>\n </msup>\n <annotation>$\\mathsf {BAC}^+$</annotation>\n </semantics></math>, then <math>\n <semantics>\n <mrow>\n <mo>⟨</mo>\n <mi>M</mi>\n <mo>,</mo>\n <msup>\n <mi>S</mi>\n <mi>M</mi>\n </msup>\n <mo>,</mo>\n <msup>\n <mo>⊆</mo>\n <mi>M</mi>\n </msup>\n <mo>⟩</mo>\n </mrow>\n <annotation>$\\langle M, \\mathcal {S}^\\mathcal {M}, \\subseteq ^\\mathcal {M} \\rangle$</annotation>\n </semantics></math> is a model of <math>\n <semantics>\n <msub>\n <mi>IABA</mi>\n <mi>Ideal</mi>\n </msub>\n <annotation>$\\mathsf {IABA}_{\\mathsf {Ideal}}$</annotation>\n </semantics></math>, where <i>M</i> is the underlying set of <math>\n <semantics>\n <mi>M</mi>\n <annotation>$\\mathcal {M}$</annotation>\n </semantics></math>, <math>\n <semantics>\n <msup>\n <mi>S</mi>\n <mi>M</mi>\n </msup>\n <annotation>$\\mathcal {S}^\\mathcal {M}$</annotation>\n </semantics></math> is the unary predicate that distinguishes sets from classes and <math>\n <semantics>\n <msup>\n <mo>⊆</mo>\n <mi>M</mi>\n </msup>\n <annotation>$\\subseteq ^\\mathcal {M}$</annotation>\n </semantics></math> is the definable subset relation. These results are used to show that that <math>\n <semantics>\n <mi>BAS</mi>\n <annotation>$\\mathsf {BAS}$</annotation>\n </semantics></math> decides every 2-stratified sentence of set theory and <math>\n <semantics>\n <msup>\n <mi>BAC</mi>\n <mo>+</mo>\n </msup>\n <annotation>$\\mathsf {BAC}^+$</annotation>\n </semantics></math> decides every 2-stratified sentence of class theory.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The subset relation and 2-stratified sentences in set theory and class theory\",\"authors\":\"Zachiri McKenzie\",\"doi\":\"10.1002/malq.202200029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Hamkins and Kikuchi (2016, 2017) show that in both set theory and class theory the definable subset ordering of the universe interprets a complete and decidable theory. This paper identifies the minimum subsystem of <math>\\n <semantics>\\n <mi>ZF</mi>\\n <annotation>$\\\\mathsf {ZF}$</annotation>\\n </semantics></math>, <math>\\n <semantics>\\n <mi>BAS</mi>\\n <annotation>$\\\\mathsf {BAS}$</annotation>\\n </semantics></math>, that ensures that the definable subset ordering of the universe interprets a complete theory, and classifies the structures that can be realised as the subset relation in a model of this set theory. Extending and refining Hamkins and Kikuchi's result for class theory, a complete extension, <math>\\n <semantics>\\n <msub>\\n <mi>IABA</mi>\\n <mi>Ideal</mi>\\n </msub>\\n <annotation>$\\\\mathsf {IABA}_{\\\\mathsf {Ideal}}$</annotation>\\n </semantics></math>, of the theory of infinite atomic boolean algebras and a minimum subsystem, <math>\\n <semantics>\\n <msup>\\n <mi>BAC</mi>\\n <mo>+</mo>\\n </msup>\\n <annotation>$\\\\mathsf {BAC}^+$</annotation>\\n </semantics></math>, of <math>\\n <semantics>\\n <mi>NBG</mi>\\n <annotation>$\\\\mathsf {NBG}$</annotation>\\n </semantics></math> are identified with the property that if <math>\\n <semantics>\\n <mi>M</mi>\\n <annotation>$\\\\mathcal {M}$</annotation>\\n </semantics></math> is a model of <math>\\n <semantics>\\n <msup>\\n <mi>BAC</mi>\\n <mo>+</mo>\\n </msup>\\n <annotation>$\\\\mathsf {BAC}^+$</annotation>\\n </semantics></math>, then <math>\\n <semantics>\\n <mrow>\\n <mo>⟨</mo>\\n <mi>M</mi>\\n <mo>,</mo>\\n <msup>\\n <mi>S</mi>\\n <mi>M</mi>\\n </msup>\\n <mo>,</mo>\\n <msup>\\n <mo>⊆</mo>\\n <mi>M</mi>\\n </msup>\\n <mo>⟩</mo>\\n </mrow>\\n <annotation>$\\\\langle M, \\\\mathcal {S}^\\\\mathcal {M}, \\\\subseteq ^\\\\mathcal {M} \\\\rangle$</annotation>\\n </semantics></math> is a model of <math>\\n <semantics>\\n <msub>\\n <mi>IABA</mi>\\n <mi>Ideal</mi>\\n </msub>\\n <annotation>$\\\\mathsf {IABA}_{\\\\mathsf {Ideal}}$</annotation>\\n </semantics></math>, where <i>M</i> is the underlying set of <math>\\n <semantics>\\n <mi>M</mi>\\n <annotation>$\\\\mathcal {M}$</annotation>\\n </semantics></math>, <math>\\n <semantics>\\n <msup>\\n <mi>S</mi>\\n <mi>M</mi>\\n </msup>\\n <annotation>$\\\\mathcal {S}^\\\\mathcal {M}$</annotation>\\n </semantics></math> is the unary predicate that distinguishes sets from classes and <math>\\n <semantics>\\n <msup>\\n <mo>⊆</mo>\\n <mi>M</mi>\\n </msup>\\n <annotation>$\\\\subseteq ^\\\\mathcal {M}$</annotation>\\n </semantics></math> is the definable subset relation. These results are used to show that that <math>\\n <semantics>\\n <mi>BAS</mi>\\n <annotation>$\\\\mathsf {BAS}$</annotation>\\n </semantics></math> decides every 2-stratified sentence of set theory and <math>\\n <semantics>\\n <msup>\\n <mi>BAC</mi>\\n <mo>+</mo>\\n </msup>\\n <annotation>$\\\\mathsf {BAC}^+$</annotation>\\n </semantics></math> decides every 2-stratified sentence of class theory.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/malq.202200029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202200029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Hamkins和Kikuchi(20162017)表明,在集合论和类论中,宇宙的可定义子集排序解释了一个完整的可判定理论。本文确定了ZF$\mathsf{ZF}$的最小子系统,BAS$\mathsf{BAS}$,它确保了宇宙的可定义子集排序解释了一个完整的理论,并将可以实现的结构分类为该集合论模型中的子集关系。对Hamkins和Kikuchi关于类理论的结果的扩展和改进,一个完全的扩展,IABA Ideal$\mathsf{IABA}_{\mathsf{Ideal}}$,无穷原子布尔代数理论和最小子系统BAC+$\mathsf{BAC}^+$,NBG$\mathsf{NBG}$的性质被识别为,如果M$\mathcal{M}$是BAC+$\mathsf{BAC}^+$的模型,则⟨M,S M,⊆M⟩$\langle M,\mathcal{S}^\mathcal{M},\substeq^\mathcal{M}\rangle$是IABA Ideal$\mathsf的一个模型{IABA}_{\mathsf{Ideal}}$,其中M是M$\mathcal{M}$的基础集,S M$\mathcal{S}^\mathcal{M}$是区分集合和类的一元谓词,并且⊆M$\substeq^\mathical{M}$是可定义的子集关系。这些结果表明,BAS$\mathsf{BAS}$决定了集合论的每一个2层句子,BAC+$\mathsf{BAC}^+$决定了类论的每两层句子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
The subset relation and 2-stratified sentences in set theory and class theory

Hamkins and Kikuchi (2016, 2017) show that in both set theory and class theory the definable subset ordering of the universe interprets a complete and decidable theory. This paper identifies the minimum subsystem of ZF $\mathsf {ZF}$ , BAS $\mathsf {BAS}$ , that ensures that the definable subset ordering of the universe interprets a complete theory, and classifies the structures that can be realised as the subset relation in a model of this set theory. Extending and refining Hamkins and Kikuchi's result for class theory, a complete extension, IABA Ideal $\mathsf {IABA}_{\mathsf {Ideal}}$ , of the theory of infinite atomic boolean algebras and a minimum subsystem, BAC + $\mathsf {BAC}^+$ , of NBG $\mathsf {NBG}$ are identified with the property that if M $\mathcal {M}$ is a model of BAC + $\mathsf {BAC}^+$ , then M , S M , M $\langle M, \mathcal {S}^\mathcal {M}, \subseteq ^\mathcal {M} \rangle$ is a model of IABA Ideal $\mathsf {IABA}_{\mathsf {Ideal}}$ , where M is the underlying set of M $\mathcal {M}$ , S M $\mathcal {S}^\mathcal {M}$ is the unary predicate that distinguishes sets from classes and M $\subseteq ^\mathcal {M}$ is the definable subset relation. These results are used to show that that BAS $\mathsf {BAS}$ decides every 2-stratified sentence of set theory and BAC + $\mathsf {BAC}^+$ decides every 2-stratified sentence of class theory.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信