Kelly J. Benoit-Bird, Chad M. Waluk, Eric J. Martin, Kim R. Reisenbichler, Robert E. Sherlock, Paul R. McGill, Bruce H. Robison
{"title":"薛定谔的鱼:考察机器人观察者对远洋动物的影响","authors":"Kelly J. Benoit-Bird, Chad M. Waluk, Eric J. Martin, Kim R. Reisenbichler, Robert E. Sherlock, Paul R. McGill, Bruce H. Robison","doi":"10.1002/lom3.10565","DOIUrl":null,"url":null,"abstract":"<p>Robust sampling of animals is necessary for understanding ocean ecology, but evaluating the effectiveness of our samplers is a challenge. Scientific echosounders were added to two robotic platforms carrying video imaging systems: a remotely operated vehicle (ROV) and an autonomous underwater vehicle (AUV). The vehicles were used to quantitatively sample midwater life in Monterey Bay along horizontal transects at incremental depths ranging from 25 to 1000 m. The echosounders allowed the bulk behavioral responses of animals to be observed up to 200 m forward of each platform. These responses observed included no response, continual avoidance, avoidance to a fixed range resulting in a patch, and attraction. There were strong and interacting effects of depth and platform type on behavioral responses. Measurements of acoustic backscatter showed that animals responded more strongly to the AUV than the ROV. During AUV surveys, there were effects of day/night and the use of artificial illumination on animal responses. Behavioral responses to our sampling were both species- and context-dependent. These data inspired the expansion of an existing mathematical framework that formalized the processes affecting the sampling of motile ocean organisms. Originally developed for net sampling, we generalized the equations to be platform- and sensor-agnostic and incorporated animal decision-making processes to allow for behaviors consistent with the full range of responses we observed. These results and the framework can help move toward more effective sampling of motile animals in the ocean.</p>","PeriodicalId":18145,"journal":{"name":"Limnology and Oceanography: Methods","volume":"21 9","pages":"563-580"},"PeriodicalIF":2.1000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lom3.10565","citationCount":"0","resultStr":"{\"title\":\"Schrödinger's fish: Examining the robotic observer effect on pelagic animals\",\"authors\":\"Kelly J. Benoit-Bird, Chad M. Waluk, Eric J. Martin, Kim R. Reisenbichler, Robert E. Sherlock, Paul R. McGill, Bruce H. Robison\",\"doi\":\"10.1002/lom3.10565\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Robust sampling of animals is necessary for understanding ocean ecology, but evaluating the effectiveness of our samplers is a challenge. Scientific echosounders were added to two robotic platforms carrying video imaging systems: a remotely operated vehicle (ROV) and an autonomous underwater vehicle (AUV). The vehicles were used to quantitatively sample midwater life in Monterey Bay along horizontal transects at incremental depths ranging from 25 to 1000 m. The echosounders allowed the bulk behavioral responses of animals to be observed up to 200 m forward of each platform. These responses observed included no response, continual avoidance, avoidance to a fixed range resulting in a patch, and attraction. There were strong and interacting effects of depth and platform type on behavioral responses. Measurements of acoustic backscatter showed that animals responded more strongly to the AUV than the ROV. During AUV surveys, there were effects of day/night and the use of artificial illumination on animal responses. Behavioral responses to our sampling were both species- and context-dependent. These data inspired the expansion of an existing mathematical framework that formalized the processes affecting the sampling of motile ocean organisms. Originally developed for net sampling, we generalized the equations to be platform- and sensor-agnostic and incorporated animal decision-making processes to allow for behaviors consistent with the full range of responses we observed. These results and the framework can help move toward more effective sampling of motile animals in the ocean.</p>\",\"PeriodicalId\":18145,\"journal\":{\"name\":\"Limnology and Oceanography: Methods\",\"volume\":\"21 9\",\"pages\":\"563-580\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lom3.10565\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Limnology and Oceanography: Methods\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/lom3.10565\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"LIMNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Limnology and Oceanography: Methods","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/lom3.10565","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LIMNOLOGY","Score":null,"Total":0}
Schrödinger's fish: Examining the robotic observer effect on pelagic animals
Robust sampling of animals is necessary for understanding ocean ecology, but evaluating the effectiveness of our samplers is a challenge. Scientific echosounders were added to two robotic platforms carrying video imaging systems: a remotely operated vehicle (ROV) and an autonomous underwater vehicle (AUV). The vehicles were used to quantitatively sample midwater life in Monterey Bay along horizontal transects at incremental depths ranging from 25 to 1000 m. The echosounders allowed the bulk behavioral responses of animals to be observed up to 200 m forward of each platform. These responses observed included no response, continual avoidance, avoidance to a fixed range resulting in a patch, and attraction. There were strong and interacting effects of depth and platform type on behavioral responses. Measurements of acoustic backscatter showed that animals responded more strongly to the AUV than the ROV. During AUV surveys, there were effects of day/night and the use of artificial illumination on animal responses. Behavioral responses to our sampling were both species- and context-dependent. These data inspired the expansion of an existing mathematical framework that formalized the processes affecting the sampling of motile ocean organisms. Originally developed for net sampling, we generalized the equations to be platform- and sensor-agnostic and incorporated animal decision-making processes to allow for behaviors consistent with the full range of responses we observed. These results and the framework can help move toward more effective sampling of motile animals in the ocean.
期刊介绍:
Limnology and Oceanography: Methods (ISSN 1541-5856) is a companion to ASLO''s top-rated journal Limnology and Oceanography, and articles are held to the same high standards. In order to provide the most rapid publication consistent with high standards, Limnology and Oceanography: Methods appears in electronic format only, and the entire submission and review system is online. Articles are posted as soon as they are accepted and formatted for publication.
Limnology and Oceanography: Methods will consider manuscripts whose primary focus is methodological, and that deal with problems in the aquatic sciences. Manuscripts may present new measurement equipment, techniques for analyzing observations or samples, methods for understanding and interpreting information, analyses of metadata to examine the effectiveness of approaches, invited and contributed reviews and syntheses, and techniques for communicating and teaching in the aquatic sciences.