薛定谔的鱼:考察机器人观察者对远洋动物的影响

IF 2.1 3区 地球科学 Q2 LIMNOLOGY
Kelly J. Benoit-Bird, Chad M. Waluk, Eric J. Martin, Kim R. Reisenbichler, Robert E. Sherlock, Paul R. McGill, Bruce H. Robison
{"title":"薛定谔的鱼:考察机器人观察者对远洋动物的影响","authors":"Kelly J. Benoit-Bird,&nbsp;Chad M. Waluk,&nbsp;Eric J. Martin,&nbsp;Kim R. Reisenbichler,&nbsp;Robert E. Sherlock,&nbsp;Paul R. McGill,&nbsp;Bruce H. Robison","doi":"10.1002/lom3.10565","DOIUrl":null,"url":null,"abstract":"<p>Robust sampling of animals is necessary for understanding ocean ecology, but evaluating the effectiveness of our samplers is a challenge. Scientific echosounders were added to two robotic platforms carrying video imaging systems: a remotely operated vehicle (ROV) and an autonomous underwater vehicle (AUV). The vehicles were used to quantitatively sample midwater life in Monterey Bay along horizontal transects at incremental depths ranging from 25 to 1000 m. The echosounders allowed the bulk behavioral responses of animals to be observed up to 200 m forward of each platform. These responses observed included no response, continual avoidance, avoidance to a fixed range resulting in a patch, and attraction. There were strong and interacting effects of depth and platform type on behavioral responses. Measurements of acoustic backscatter showed that animals responded more strongly to the AUV than the ROV. During AUV surveys, there were effects of day/night and the use of artificial illumination on animal responses. Behavioral responses to our sampling were both species- and context-dependent. These data inspired the expansion of an existing mathematical framework that formalized the processes affecting the sampling of motile ocean organisms. Originally developed for net sampling, we generalized the equations to be platform- and sensor-agnostic and incorporated animal decision-making processes to allow for behaviors consistent with the full range of responses we observed. These results and the framework can help move toward more effective sampling of motile animals in the ocean.</p>","PeriodicalId":18145,"journal":{"name":"Limnology and Oceanography: Methods","volume":"21 9","pages":"563-580"},"PeriodicalIF":2.1000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lom3.10565","citationCount":"0","resultStr":"{\"title\":\"Schrödinger's fish: Examining the robotic observer effect on pelagic animals\",\"authors\":\"Kelly J. Benoit-Bird,&nbsp;Chad M. Waluk,&nbsp;Eric J. Martin,&nbsp;Kim R. Reisenbichler,&nbsp;Robert E. Sherlock,&nbsp;Paul R. McGill,&nbsp;Bruce H. Robison\",\"doi\":\"10.1002/lom3.10565\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Robust sampling of animals is necessary for understanding ocean ecology, but evaluating the effectiveness of our samplers is a challenge. Scientific echosounders were added to two robotic platforms carrying video imaging systems: a remotely operated vehicle (ROV) and an autonomous underwater vehicle (AUV). The vehicles were used to quantitatively sample midwater life in Monterey Bay along horizontal transects at incremental depths ranging from 25 to 1000 m. The echosounders allowed the bulk behavioral responses of animals to be observed up to 200 m forward of each platform. These responses observed included no response, continual avoidance, avoidance to a fixed range resulting in a patch, and attraction. There were strong and interacting effects of depth and platform type on behavioral responses. Measurements of acoustic backscatter showed that animals responded more strongly to the AUV than the ROV. During AUV surveys, there were effects of day/night and the use of artificial illumination on animal responses. Behavioral responses to our sampling were both species- and context-dependent. These data inspired the expansion of an existing mathematical framework that formalized the processes affecting the sampling of motile ocean organisms. Originally developed for net sampling, we generalized the equations to be platform- and sensor-agnostic and incorporated animal decision-making processes to allow for behaviors consistent with the full range of responses we observed. These results and the framework can help move toward more effective sampling of motile animals in the ocean.</p>\",\"PeriodicalId\":18145,\"journal\":{\"name\":\"Limnology and Oceanography: Methods\",\"volume\":\"21 9\",\"pages\":\"563-580\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lom3.10565\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Limnology and Oceanography: Methods\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/lom3.10565\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"LIMNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Limnology and Oceanography: Methods","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/lom3.10565","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LIMNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

对动物进行强有力的采样对于理解海洋生态是必要的,但评估我们采样器的有效性是一个挑战。科学回声测深仪被添加到两个携带视频成像系统的机器人平台上:一个遥控潜水器(ROV)和一个自动水下潜水器(AUV)。这些交通工具被用来沿着25至1000米的水平横断面对蒙特利湾的中层水域生物进行定量采样 m.回声测深仪可以观察到多达200只动物的整体行为反应 每个平台前方m处。观察到的这些反应包括无反应、持续回避、回避到导致补丁的固定范围和吸引。深度和平台类型对行为反应具有强烈的交互作用。声学后向散射的测量表明,动物对AUV的反应比ROV更强烈。在AUV调查期间,白天/晚上和使用人工照明对动物反应有影响。对我们采样的行为反应既依赖于物种,也依赖于环境。这些数据启发了现有数学框架的扩展,该框架正式化了影响活动海洋生物采样的过程。最初是为网络采样开发的,我们将方程推广为平台和传感器不可知的,并结合了动物决策过程,以允许行为与我们观察到的全方位反应一致。这些结果和框架可以帮助更有效地对海洋中活动动物进行采样。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Schrödinger's fish: Examining the robotic observer effect on pelagic animals

Schrödinger's fish: Examining the robotic observer effect on pelagic animals

Robust sampling of animals is necessary for understanding ocean ecology, but evaluating the effectiveness of our samplers is a challenge. Scientific echosounders were added to two robotic platforms carrying video imaging systems: a remotely operated vehicle (ROV) and an autonomous underwater vehicle (AUV). The vehicles were used to quantitatively sample midwater life in Monterey Bay along horizontal transects at incremental depths ranging from 25 to 1000 m. The echosounders allowed the bulk behavioral responses of animals to be observed up to 200 m forward of each platform. These responses observed included no response, continual avoidance, avoidance to a fixed range resulting in a patch, and attraction. There were strong and interacting effects of depth and platform type on behavioral responses. Measurements of acoustic backscatter showed that animals responded more strongly to the AUV than the ROV. During AUV surveys, there were effects of day/night and the use of artificial illumination on animal responses. Behavioral responses to our sampling were both species- and context-dependent. These data inspired the expansion of an existing mathematical framework that formalized the processes affecting the sampling of motile ocean organisms. Originally developed for net sampling, we generalized the equations to be platform- and sensor-agnostic and incorporated animal decision-making processes to allow for behaviors consistent with the full range of responses we observed. These results and the framework can help move toward more effective sampling of motile animals in the ocean.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
3.70%
发文量
56
审稿时长
3 months
期刊介绍: Limnology and Oceanography: Methods (ISSN 1541-5856) is a companion to ASLO''s top-rated journal Limnology and Oceanography, and articles are held to the same high standards. In order to provide the most rapid publication consistent with high standards, Limnology and Oceanography: Methods appears in electronic format only, and the entire submission and review system is online. Articles are posted as soon as they are accepted and formatted for publication. Limnology and Oceanography: Methods will consider manuscripts whose primary focus is methodological, and that deal with problems in the aquatic sciences. Manuscripts may present new measurement equipment, techniques for analyzing observations or samples, methods for understanding and interpreting information, analyses of metadata to examine the effectiveness of approaches, invited and contributed reviews and syntheses, and techniques for communicating and teaching in the aquatic sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信