一阶仿射不变轨道中等周期叶密度的一个判据

IF 0.8 2区 数学 Q2 MATHEMATICS
Florent Ygouf
{"title":"一阶仿射不变轨道中等周期叶密度的一个判据","authors":"Florent Ygouf","doi":"10.1112/topo.12279","DOIUrl":null,"url":null,"abstract":"<p>We define on any affine invariant orbifold <math>\n <semantics>\n <mi>M</mi>\n <annotation>$\\mathcal {M}$</annotation>\n </semantics></math> a foliation <math>\n <semantics>\n <msup>\n <mi>F</mi>\n <mi>M</mi>\n </msup>\n <annotation>$\\mathcal {F}^{\\mathcal {M}}$</annotation>\n </semantics></math> that generalizes the isoperiodic foliation on strata of the moduli space of translation surfaces and study the dynamics of its leaves in the rank 1 case. We establish a criterion that ensures the density of the leaves and provide two applications of this criterion. The first one is a classification of the dynamical behavior of the leaves of <math>\n <semantics>\n <msup>\n <mi>F</mi>\n <mi>M</mi>\n </msup>\n <annotation>$\\mathcal {F}^{\\mathcal {M}}$</annotation>\n </semantics></math> when <math>\n <semantics>\n <mi>M</mi>\n <annotation>$\\mathcal {M}$</annotation>\n </semantics></math> is a connected component of a Prym eigenform locus in genus 2 or 3 and the second provides the first examples of dense isoperiodic leaves in the stratum <math>\n <semantics>\n <mrow>\n <mi>H</mi>\n <mo>(</mo>\n <mn>2</mn>\n <mo>,</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathcal {H}(2,1,1)$</annotation>\n </semantics></math>.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"16 1","pages":"1-19"},"PeriodicalIF":0.8000,"publicationDate":"2022-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12279","citationCount":"1","resultStr":"{\"title\":\"A criterion for density of the isoperiodic leaves in rank one affine invariant orbifolds\",\"authors\":\"Florent Ygouf\",\"doi\":\"10.1112/topo.12279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We define on any affine invariant orbifold <math>\\n <semantics>\\n <mi>M</mi>\\n <annotation>$\\\\mathcal {M}$</annotation>\\n </semantics></math> a foliation <math>\\n <semantics>\\n <msup>\\n <mi>F</mi>\\n <mi>M</mi>\\n </msup>\\n <annotation>$\\\\mathcal {F}^{\\\\mathcal {M}}$</annotation>\\n </semantics></math> that generalizes the isoperiodic foliation on strata of the moduli space of translation surfaces and study the dynamics of its leaves in the rank 1 case. We establish a criterion that ensures the density of the leaves and provide two applications of this criterion. The first one is a classification of the dynamical behavior of the leaves of <math>\\n <semantics>\\n <msup>\\n <mi>F</mi>\\n <mi>M</mi>\\n </msup>\\n <annotation>$\\\\mathcal {F}^{\\\\mathcal {M}}$</annotation>\\n </semantics></math> when <math>\\n <semantics>\\n <mi>M</mi>\\n <annotation>$\\\\mathcal {M}$</annotation>\\n </semantics></math> is a connected component of a Prym eigenform locus in genus 2 or 3 and the second provides the first examples of dense isoperiodic leaves in the stratum <math>\\n <semantics>\\n <mrow>\\n <mi>H</mi>\\n <mo>(</mo>\\n <mn>2</mn>\\n <mo>,</mo>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mn>1</mn>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\mathcal {H}(2,1,1)$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":56114,\"journal\":{\"name\":\"Journal of Topology\",\"volume\":\"16 1\",\"pages\":\"1-19\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12279\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Topology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/topo.12279\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Topology","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12279","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

我们在任何仿射不变的orbifold M$\mathcal{M}$上定义了一个叶理FM$\math cal{F}^{\mathcal}}$,它推广了平移面的模空间的层上的等周期叶理,并且对1级叶片的动态特性进行了研究。我们建立了一个确保叶片密度的标准,并提供了该标准的两个应用。第一个是当M$\mathcal{M}$是亏格2或3中Prym本征型轨迹的连通分量并且第二个例子提供了层H(2,1,1)$\mathcal{H}(2,1,1)$中稠密等周期叶的第一个例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A criterion for density of the isoperiodic leaves in rank one affine invariant orbifolds

A criterion for density of the isoperiodic leaves in rank one affine invariant orbifolds

We define on any affine invariant orbifold M $\mathcal {M}$ a foliation F M $\mathcal {F}^{\mathcal {M}}$ that generalizes the isoperiodic foliation on strata of the moduli space of translation surfaces and study the dynamics of its leaves in the rank 1 case. We establish a criterion that ensures the density of the leaves and provide two applications of this criterion. The first one is a classification of the dynamical behavior of the leaves of F M $\mathcal {F}^{\mathcal {M}}$ when M $\mathcal {M}$ is a connected component of a Prym eigenform locus in genus 2 or 3 and the second provides the first examples of dense isoperiodic leaves in the stratum H ( 2 , 1 , 1 ) $\mathcal {H}(2,1,1)$ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Topology
Journal of Topology 数学-数学
CiteScore
2.00
自引率
9.10%
发文量
62
审稿时长
>12 weeks
期刊介绍: The Journal of Topology publishes papers of high quality and significance in topology, geometry and adjacent areas of mathematics. Interesting, important and often unexpected links connect topology and geometry with many other parts of mathematics, and the editors welcome submissions on exciting new advances concerning such links, as well as those in the core subject areas of the journal. The Journal of Topology was founded in 2008. It is published quarterly with articles published individually online prior to appearing in a printed issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信