关于Carmichael lambda函数分布的两个问题

IF 0.8 3区 数学 Q2 MATHEMATICS
Mathematika Pub Date : 2023-09-27 DOI:10.1112/mtk.12222
Paul Pollack
{"title":"关于Carmichael lambda函数分布的两个问题","authors":"Paul Pollack","doi":"10.1112/mtk.12222","DOIUrl":null,"url":null,"abstract":"<p>Let <math>\n <semantics>\n <mrow>\n <mi>λ</mi>\n <mo>(</mo>\n <mi>n</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\lambda (n)$</annotation>\n </semantics></math> denote the exponent of the multiplicative group modulo <i>n</i>. We show that when <i>q</i> is odd, each coprime residue class modulo <i>q</i> is hit equally often by <math>\n <semantics>\n <mrow>\n <mi>λ</mi>\n <mo>(</mo>\n <mi>n</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\lambda (n)$</annotation>\n </semantics></math> as <i>n</i> varies. Under the stronger assumption that <math>\n <semantics>\n <mrow>\n <mo>gcd</mo>\n <mo>(</mo>\n <mi>q</mi>\n <mo>,</mo>\n <mn>6</mn>\n <mo>)</mo>\n <mo>=</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$\\gcd (q,6)=1$</annotation>\n </semantics></math>, we prove that equidistribution persists throughout a Siegel–Walfisz-type range of uniformity. By similar methods we show that <math>\n <semantics>\n <mrow>\n <mi>λ</mi>\n <mo>(</mo>\n <mi>n</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\lambda (n)$</annotation>\n </semantics></math> obeys Benford's leading digit law with respect to natural density. Moreover, if we assume Generalized Riemann Hypothesis, then Benford's law holds for the order of <i>a</i> mod <i>n</i>, for any fixed integer <math>\n <semantics>\n <mrow>\n <mi>a</mi>\n <mo>∉</mo>\n <mo>{</mo>\n <mn>0</mn>\n <mo>,</mo>\n <mo>±</mo>\n <mn>1</mn>\n <mo>}</mo>\n </mrow>\n <annotation>$a\\notin \\lbrace 0,\\pm 1\\rbrace$</annotation>\n </semantics></math>.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.12222","citationCount":"0","resultStr":"{\"title\":\"Two problems on the distribution of Carmichael's lambda function\",\"authors\":\"Paul Pollack\",\"doi\":\"10.1112/mtk.12222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <math>\\n <semantics>\\n <mrow>\\n <mi>λ</mi>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\lambda (n)$</annotation>\\n </semantics></math> denote the exponent of the multiplicative group modulo <i>n</i>. We show that when <i>q</i> is odd, each coprime residue class modulo <i>q</i> is hit equally often by <math>\\n <semantics>\\n <mrow>\\n <mi>λ</mi>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\lambda (n)$</annotation>\\n </semantics></math> as <i>n</i> varies. Under the stronger assumption that <math>\\n <semantics>\\n <mrow>\\n <mo>gcd</mo>\\n <mo>(</mo>\\n <mi>q</mi>\\n <mo>,</mo>\\n <mn>6</mn>\\n <mo>)</mo>\\n <mo>=</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$\\\\gcd (q,6)=1$</annotation>\\n </semantics></math>, we prove that equidistribution persists throughout a Siegel–Walfisz-type range of uniformity. By similar methods we show that <math>\\n <semantics>\\n <mrow>\\n <mi>λ</mi>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\lambda (n)$</annotation>\\n </semantics></math> obeys Benford's leading digit law with respect to natural density. Moreover, if we assume Generalized Riemann Hypothesis, then Benford's law holds for the order of <i>a</i> mod <i>n</i>, for any fixed integer <math>\\n <semantics>\\n <mrow>\\n <mi>a</mi>\\n <mo>∉</mo>\\n <mo>{</mo>\\n <mn>0</mn>\\n <mo>,</mo>\\n <mo>±</mo>\\n <mn>1</mn>\\n <mo>}</mo>\\n </mrow>\\n <annotation>$a\\\\notin \\\\lbrace 0,\\\\pm 1\\\\rbrace$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":18463,\"journal\":{\"name\":\"Mathematika\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.12222\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematika\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/mtk.12222\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematika","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/mtk.12222","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设λ(n)$\lambda(n)$表示乘性群模n的指数。我们证明了当q是奇数时,当n变化时,模q的每个互素残差类同样频繁地被λ(n)$\lambda(n)$击中。在gcd(q,6)=1$\gcd(q,6)=1$的更强假设下,我们证明了均匀分布在Siegel–Walfisz型均匀性范围内持续存在。通过类似的方法,我们证明了λ(n)$\lambda(n)$关于自然密度服从Benford的前导数字定律。此外,如果我们假设广义黎曼假说,那么Benford定律适用于模n的阶,对于任何固定整数a∉{0,±1}$a \notin\lbrace 0,\下午1\rbrace$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two problems on the distribution of Carmichael's lambda function

Let λ ( n ) $\lambda (n)$ denote the exponent of the multiplicative group modulo n. We show that when q is odd, each coprime residue class modulo q is hit equally often by λ ( n ) $\lambda (n)$ as n varies. Under the stronger assumption that gcd ( q , 6 ) = 1 $\gcd (q,6)=1$ , we prove that equidistribution persists throughout a Siegel–Walfisz-type range of uniformity. By similar methods we show that λ ( n ) $\lambda (n)$ obeys Benford's leading digit law with respect to natural density. Moreover, if we assume Generalized Riemann Hypothesis, then Benford's law holds for the order of a mod n, for any fixed integer a { 0 , ± 1 } $a\notin \lbrace 0,\pm 1\rbrace$ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematika
Mathematika MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.40
自引率
0.00%
发文量
60
审稿时长
>12 weeks
期刊介绍: Mathematika publishes both pure and applied mathematical articles and has done so continuously since its founding by Harold Davenport in the 1950s. The traditional emphasis has been towards the purer side of mathematics but applied mathematics and articles addressing both aspects are equally welcome. The journal is published by the London Mathematical Society, on behalf of its owner University College London, and will continue to publish research papers of the highest mathematical quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信