{"title":"关于短区间模逆的分布","authors":"Moubariz Z. Garaev, Igor E. Shparlinski","doi":"10.1112/mtk.12224","DOIUrl":null,"url":null,"abstract":"<p>For a prime number <i>p</i> and integer <i>x</i> with <math>\n <semantics>\n <mrow>\n <mo>gcd</mo>\n <mo>(</mo>\n <mi>x</mi>\n <mo>,</mo>\n <mi>p</mi>\n <mo>)</mo>\n <mo>=</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$\\gcd (x,p)=1$</annotation>\n </semantics></math>, let <math>\n <semantics>\n <mover>\n <mi>x</mi>\n <mo>¯</mo>\n </mover>\n <annotation>$\\overline{x}$</annotation>\n </semantics></math> denote the multiplicative inverse of <i>x</i> modulo <i>p</i>. In this paper, we are interested in the problem of distribution modulo <i>p</i> of the sequence\n\n </p><p>For any fixed <math>\n <semantics>\n <mrow>\n <mi>A</mi>\n <mo>></mo>\n <mn>1</mn>\n </mrow>\n <annotation>$A > 1$</annotation>\n </semantics></math> and for any sufficiently large integer <i>N</i>, there exists a prime number <i>p</i> with\n\n </p><p>For any fixed positive <math>\n <semantics>\n <mrow>\n <mi>γ</mi>\n <mo><</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$\\gamma < 1$</annotation>\n </semantics></math>, there exists a positive constant <i>c</i> such that the following holds: for any sufficiently large integer <i>N</i> there is a prime number <math>\n <semantics>\n <mrow>\n <mi>p</mi>\n <mo>></mo>\n <mi>N</mi>\n </mrow>\n <annotation>$p > N$</annotation>\n </semantics></math> such that\n\n </p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.12224","citationCount":"0","resultStr":"{\"title\":\"On the distribution of modular inverses from short intervals\",\"authors\":\"Moubariz Z. Garaev, Igor E. Shparlinski\",\"doi\":\"10.1112/mtk.12224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For a prime number <i>p</i> and integer <i>x</i> with <math>\\n <semantics>\\n <mrow>\\n <mo>gcd</mo>\\n <mo>(</mo>\\n <mi>x</mi>\\n <mo>,</mo>\\n <mi>p</mi>\\n <mo>)</mo>\\n <mo>=</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$\\\\gcd (x,p)=1$</annotation>\\n </semantics></math>, let <math>\\n <semantics>\\n <mover>\\n <mi>x</mi>\\n <mo>¯</mo>\\n </mover>\\n <annotation>$\\\\overline{x}$</annotation>\\n </semantics></math> denote the multiplicative inverse of <i>x</i> modulo <i>p</i>. In this paper, we are interested in the problem of distribution modulo <i>p</i> of the sequence\\n\\n </p><p>For any fixed <math>\\n <semantics>\\n <mrow>\\n <mi>A</mi>\\n <mo>></mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$A > 1$</annotation>\\n </semantics></math> and for any sufficiently large integer <i>N</i>, there exists a prime number <i>p</i> with\\n\\n </p><p>For any fixed positive <math>\\n <semantics>\\n <mrow>\\n <mi>γ</mi>\\n <mo><</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$\\\\gamma < 1$</annotation>\\n </semantics></math>, there exists a positive constant <i>c</i> such that the following holds: for any sufficiently large integer <i>N</i> there is a prime number <math>\\n <semantics>\\n <mrow>\\n <mi>p</mi>\\n <mo>></mo>\\n <mi>N</mi>\\n </mrow>\\n <annotation>$p > N$</annotation>\\n </semantics></math> such that\\n\\n </p>\",\"PeriodicalId\":18463,\"journal\":{\"name\":\"Mathematika\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.12224\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematika\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/mtk.12224\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematika","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/mtk.12224","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
On the distribution of modular inverses from short intervals
For a prime number p and integer x with , let denote the multiplicative inverse of x modulo p. In this paper, we are interested in the problem of distribution modulo p of the sequence
For any fixed and for any sufficiently large integer N, there exists a prime number p with
For any fixed positive , there exists a positive constant c such that the following holds: for any sufficiently large integer N there is a prime number such that
期刊介绍:
Mathematika publishes both pure and applied mathematical articles and has done so continuously since its founding by Harold Davenport in the 1950s. The traditional emphasis has been towards the purer side of mathematics but applied mathematics and articles addressing both aspects are equally welcome. The journal is published by the London Mathematical Society, on behalf of its owner University College London, and will continue to publish research papers of the highest mathematical quality.