Filippo Cherubini, Andrea Casini, Costanza Cucci, Marcello Picollo, Lorenzo Stefani
{"title":"高光谱相机在受控环境中对多色表面进行比色测量的应用以及显示比色数据的三种图像处理软件的评估:介绍了方法的优点和缺点","authors":"Filippo Cherubini, Andrea Casini, Costanza Cucci, Marcello Picollo, Lorenzo Stefani","doi":"10.1002/col.22835","DOIUrl":null,"url":null,"abstract":"<p>This work explores the potential of a compact hyperspectral camera, Specim IQ, for the remote colorimetric study of polychrome surfaces in controlled environments. These measurements are generally made with dedicated instruments, such as colorimeters or spectrophotometers, which require contact with the surface and coverage areas of the order of 10s of mm<sup>2</sup>. These two characteristics, contact and a very small analysis area, can severely limit the study of polychrome surfaces, since the measured areas are not necessarily representative of the entire surface. In addition, it is not always possible to touch the objects being analyzed. A possible alternative is the use of compact hyperspectral cameras, such as Specim IQ, for the in situ study of the spectral and colorimetric characteristics of these surfaces. To better address this research, which is still in the preliminary phase, a 2 × 45°/0° geometry measuringement was used. The illumination of the image plane at 45° with respect to the camera made it possible to eliminate the components reflected specularly on the camera lens. With this shooting geometry, Labsphere Color and Gray Reflectance Standards (eight color and four gray standards) were analyzed and placed on seven different color backgrounds. With the spectral data acquired, it was possible to calculate the color of the targets and display the colorimetric values by means of three commonly used image processing software packages. In this way, it was possible to define for this hyperspectral camera a measurement-data processing procedure applicable to measurements in the laboratory aimed at studying the color of polychrome surfaces.</p>","PeriodicalId":10459,"journal":{"name":"Color Research and Application","volume":"48 2","pages":"210-221"},"PeriodicalIF":1.2000,"publicationDate":"2022-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of a hyperspectral camera for colorimetric measurements on polychrome surfaces in a controlled environment and evaluation of three image processing software for displaying colorimetric data: Pros and cons of the methodology presented\",\"authors\":\"Filippo Cherubini, Andrea Casini, Costanza Cucci, Marcello Picollo, Lorenzo Stefani\",\"doi\":\"10.1002/col.22835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This work explores the potential of a compact hyperspectral camera, Specim IQ, for the remote colorimetric study of polychrome surfaces in controlled environments. These measurements are generally made with dedicated instruments, such as colorimeters or spectrophotometers, which require contact with the surface and coverage areas of the order of 10s of mm<sup>2</sup>. These two characteristics, contact and a very small analysis area, can severely limit the study of polychrome surfaces, since the measured areas are not necessarily representative of the entire surface. In addition, it is not always possible to touch the objects being analyzed. A possible alternative is the use of compact hyperspectral cameras, such as Specim IQ, for the in situ study of the spectral and colorimetric characteristics of these surfaces. To better address this research, which is still in the preliminary phase, a 2 × 45°/0° geometry measuringement was used. The illumination of the image plane at 45° with respect to the camera made it possible to eliminate the components reflected specularly on the camera lens. With this shooting geometry, Labsphere Color and Gray Reflectance Standards (eight color and four gray standards) were analyzed and placed on seven different color backgrounds. With the spectral data acquired, it was possible to calculate the color of the targets and display the colorimetric values by means of three commonly used image processing software packages. In this way, it was possible to define for this hyperspectral camera a measurement-data processing procedure applicable to measurements in the laboratory aimed at studying the color of polychrome surfaces.</p>\",\"PeriodicalId\":10459,\"journal\":{\"name\":\"Color Research and Application\",\"volume\":\"48 2\",\"pages\":\"210-221\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Color Research and Application\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/col.22835\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Color Research and Application","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/col.22835","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Application of a hyperspectral camera for colorimetric measurements on polychrome surfaces in a controlled environment and evaluation of three image processing software for displaying colorimetric data: Pros and cons of the methodology presented
This work explores the potential of a compact hyperspectral camera, Specim IQ, for the remote colorimetric study of polychrome surfaces in controlled environments. These measurements are generally made with dedicated instruments, such as colorimeters or spectrophotometers, which require contact with the surface and coverage areas of the order of 10s of mm2. These two characteristics, contact and a very small analysis area, can severely limit the study of polychrome surfaces, since the measured areas are not necessarily representative of the entire surface. In addition, it is not always possible to touch the objects being analyzed. A possible alternative is the use of compact hyperspectral cameras, such as Specim IQ, for the in situ study of the spectral and colorimetric characteristics of these surfaces. To better address this research, which is still in the preliminary phase, a 2 × 45°/0° geometry measuringement was used. The illumination of the image plane at 45° with respect to the camera made it possible to eliminate the components reflected specularly on the camera lens. With this shooting geometry, Labsphere Color and Gray Reflectance Standards (eight color and four gray standards) were analyzed and placed on seven different color backgrounds. With the spectral data acquired, it was possible to calculate the color of the targets and display the colorimetric values by means of three commonly used image processing software packages. In this way, it was possible to define for this hyperspectral camera a measurement-data processing procedure applicable to measurements in the laboratory aimed at studying the color of polychrome surfaces.
期刊介绍:
Color Research and Application provides a forum for the publication of peer-reviewed research reviews, original research articles, and editorials of the highest quality on the science, technology, and application of color in multiple disciplines. Due to the highly interdisciplinary influence of color, the readership of the journal is similarly widespread and includes those in business, art, design, education, as well as various industries.