ATR-FTIR光谱早期检测糖尿病肾病

IF 3.4 Q2 CHEMISTRY, ANALYTICAL
Zack Richardson, Adele Kincses, Prof. Elif Ekinci, Dr. David Perez-Guaita, Prof. Karin Jandeleit-Dahm, Prof. Bayden R. Wood
{"title":"ATR-FTIR光谱早期检测糖尿病肾病","authors":"Zack Richardson,&nbsp;Adele Kincses,&nbsp;Prof. Elif Ekinci,&nbsp;Dr. David Perez-Guaita,&nbsp;Prof. Karin Jandeleit-Dahm,&nbsp;Prof. Bayden R. Wood","doi":"10.1002/anse.202200094","DOIUrl":null,"url":null,"abstract":"<p>Current screening methods for diabetic kidney disease (DKD), characterized by albumin excretion in urine, are expensive or only identify patients in late disease stages. Hence, there is need for a cost-effective, quick, and portable screening tool which identifies patients at DKD onset. Here we report that ultracentrifugation coupled with infrared spectroscopy and machine learning can identify and quantify low level microalbuminuria in urine samples from a cohort of diabetic patients (n=155) and controls (n=22). Independent testing of the methods indicated that classification analysis discriminated between normo- and micro/macroalbuminuric samples with sensitivity of &gt;91 % and specificity of &gt;99 %. Regression methods quantified albumin concentration in the samples with error values of 17 and 44 mg/L for normo- and microalbuminuric patients. Using only 700 μL of sample, this approach identifies patients at an earlier stage of disease than a urinary dipstick, whilst also yielding results cheaper and faster than the albumin to creatinine ratio.</p>","PeriodicalId":72192,"journal":{"name":"Analysis & sensing","volume":"3 4","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2022-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anse.202200094","citationCount":"0","resultStr":"{\"title\":\"ATR-FTIR Spectroscopy for Early Detection of Diabetic Kidney Disease\",\"authors\":\"Zack Richardson,&nbsp;Adele Kincses,&nbsp;Prof. Elif Ekinci,&nbsp;Dr. David Perez-Guaita,&nbsp;Prof. Karin Jandeleit-Dahm,&nbsp;Prof. Bayden R. Wood\",\"doi\":\"10.1002/anse.202200094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Current screening methods for diabetic kidney disease (DKD), characterized by albumin excretion in urine, are expensive or only identify patients in late disease stages. Hence, there is need for a cost-effective, quick, and portable screening tool which identifies patients at DKD onset. Here we report that ultracentrifugation coupled with infrared spectroscopy and machine learning can identify and quantify low level microalbuminuria in urine samples from a cohort of diabetic patients (n=155) and controls (n=22). Independent testing of the methods indicated that classification analysis discriminated between normo- and micro/macroalbuminuric samples with sensitivity of &gt;91 % and specificity of &gt;99 %. Regression methods quantified albumin concentration in the samples with error values of 17 and 44 mg/L for normo- and microalbuminuric patients. Using only 700 μL of sample, this approach identifies patients at an earlier stage of disease than a urinary dipstick, whilst also yielding results cheaper and faster than the albumin to creatinine ratio.</p>\",\"PeriodicalId\":72192,\"journal\":{\"name\":\"Analysis & sensing\",\"volume\":\"3 4\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2022-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anse.202200094\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis & sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anse.202200094\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis & sensing","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anse.202200094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

目前以尿液中白蛋白排泄为特征的糖尿病肾病(DKD)的筛查方法很昂贵,或者只能识别疾病晚期的患者。因此,需要一种成本效益高、快速、便携的筛查工具来识别DKD发病患者。在这里,我们报道了超速离心结合红外光谱和机器学习可以识别和量化糖尿病患者(n=155)和对照组(n=22)尿液样本中的低水平微量白蛋白尿。对这些方法的独立测试表明,分类分析以>;91 % 特异性>;99 %. 回归方法量化了样本中的白蛋白浓度,误差值为17和44 mg/L用于正常和微量白蛋白尿患者。仅使用700 μL的样本,这种方法比尿量尺识别疾病早期的患者,同时产生的结果也比白蛋白与肌酐的比率更便宜、更快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

ATR-FTIR Spectroscopy for Early Detection of Diabetic Kidney Disease

ATR-FTIR Spectroscopy for Early Detection of Diabetic Kidney Disease

Current screening methods for diabetic kidney disease (DKD), characterized by albumin excretion in urine, are expensive or only identify patients in late disease stages. Hence, there is need for a cost-effective, quick, and portable screening tool which identifies patients at DKD onset. Here we report that ultracentrifugation coupled with infrared spectroscopy and machine learning can identify and quantify low level microalbuminuria in urine samples from a cohort of diabetic patients (n=155) and controls (n=22). Independent testing of the methods indicated that classification analysis discriminated between normo- and micro/macroalbuminuric samples with sensitivity of >91 % and specificity of >99 %. Regression methods quantified albumin concentration in the samples with error values of 17 and 44 mg/L for normo- and microalbuminuric patients. Using only 700 μL of sample, this approach identifies patients at an earlier stage of disease than a urinary dipstick, whilst also yielding results cheaper and faster than the albumin to creatinine ratio.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信