Hidayatul Fitri, Gürkan A. K. Gürdil, Bahadır Demirel, Elçin Yeşiloğlu Cevher, Hynek Roubík
{"title":"印度尼西亚西努沙登加拉(WNT)农业残留物的生物质能源利用潜力","authors":"Hidayatul Fitri, Gürkan A. K. Gürdil, Bahadır Demirel, Elçin Yeşiloğlu Cevher, Hynek Roubík","doi":"10.1111/gcbb.13100","DOIUrl":null,"url":null,"abstract":"<p>The West Nusa Tenggara (WNT) province is one of the regions that contribute the most to the production of rice, corn, and cacao. The residues of these crops increase as production increases. The potential availability of the residue was calculated on the basis of the amount of agricultural product and the availability of unutilized residues. The estimated potential energy and collected data were processed and combined with converted factors, such as the yield per hectare and the calorific value, taking into account another purpose, the use of domestic residues for animal feed. Paddy straw, corn straw, and corn cobs had the highest percentage of residue availabilities, 85.91%, 82.26%, and 88.25%, respectively. In addition, the WNT regency has a rich diversity of agricultural residues from superior commodities such as rice, corn, coffee, coconut and cacao. The calculation of the total heating value (THV) of the agricultural residue available reached up to 42.4 PJ. Furthermore, the use of biomass for bioenergy resources is promising, particularly for the WNT region, with the potential for unused agricultural residues. The dependence on unsustainable energy, such as coal and fossil fuel, can be reduced by deploying and developing energy production from biomass use. Therefore, the potential for bioenergy generation and the availability of biomass can be developed for sustainable agriculture and energy management.</p>","PeriodicalId":55126,"journal":{"name":"Global Change Biology Bioenergy","volume":"15 11","pages":"1405-1414"},"PeriodicalIF":5.9000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcbb.13100","citationCount":"0","resultStr":"{\"title\":\"Biomass potential from agricultural residues for energy utilization in West Nusa Tenggara (WNT), Indonesia\",\"authors\":\"Hidayatul Fitri, Gürkan A. K. Gürdil, Bahadır Demirel, Elçin Yeşiloğlu Cevher, Hynek Roubík\",\"doi\":\"10.1111/gcbb.13100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The West Nusa Tenggara (WNT) province is one of the regions that contribute the most to the production of rice, corn, and cacao. The residues of these crops increase as production increases. The potential availability of the residue was calculated on the basis of the amount of agricultural product and the availability of unutilized residues. The estimated potential energy and collected data were processed and combined with converted factors, such as the yield per hectare and the calorific value, taking into account another purpose, the use of domestic residues for animal feed. Paddy straw, corn straw, and corn cobs had the highest percentage of residue availabilities, 85.91%, 82.26%, and 88.25%, respectively. In addition, the WNT regency has a rich diversity of agricultural residues from superior commodities such as rice, corn, coffee, coconut and cacao. The calculation of the total heating value (THV) of the agricultural residue available reached up to 42.4 PJ. Furthermore, the use of biomass for bioenergy resources is promising, particularly for the WNT region, with the potential for unused agricultural residues. The dependence on unsustainable energy, such as coal and fossil fuel, can be reduced by deploying and developing energy production from biomass use. Therefore, the potential for bioenergy generation and the availability of biomass can be developed for sustainable agriculture and energy management.</p>\",\"PeriodicalId\":55126,\"journal\":{\"name\":\"Global Change Biology Bioenergy\",\"volume\":\"15 11\",\"pages\":\"1405-1414\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2023-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcbb.13100\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Change Biology Bioenergy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/gcbb.13100\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology Bioenergy","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcbb.13100","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Biomass potential from agricultural residues for energy utilization in West Nusa Tenggara (WNT), Indonesia
The West Nusa Tenggara (WNT) province is one of the regions that contribute the most to the production of rice, corn, and cacao. The residues of these crops increase as production increases. The potential availability of the residue was calculated on the basis of the amount of agricultural product and the availability of unutilized residues. The estimated potential energy and collected data were processed and combined with converted factors, such as the yield per hectare and the calorific value, taking into account another purpose, the use of domestic residues for animal feed. Paddy straw, corn straw, and corn cobs had the highest percentage of residue availabilities, 85.91%, 82.26%, and 88.25%, respectively. In addition, the WNT regency has a rich diversity of agricultural residues from superior commodities such as rice, corn, coffee, coconut and cacao. The calculation of the total heating value (THV) of the agricultural residue available reached up to 42.4 PJ. Furthermore, the use of biomass for bioenergy resources is promising, particularly for the WNT region, with the potential for unused agricultural residues. The dependence on unsustainable energy, such as coal and fossil fuel, can be reduced by deploying and developing energy production from biomass use. Therefore, the potential for bioenergy generation and the availability of biomass can be developed for sustainable agriculture and energy management.
期刊介绍:
GCB Bioenergy is an international journal publishing original research papers, review articles and commentaries that promote understanding of the interface between biological and environmental sciences and the production of fuels directly from plants, algae and waste. The scope of the journal extends to areas outside of biology to policy forum, socioeconomic analyses, technoeconomic analyses and systems analysis. Papers do not need a global change component for consideration for publication, it is viewed as implicit that most bioenergy will be beneficial in avoiding at least a part of the fossil fuel energy that would otherwise be used.
Key areas covered by the journal:
Bioenergy feedstock and bio-oil production: energy crops and algae their management,, genomics, genetic improvements, planting, harvesting, storage, transportation, integrated logistics, production modeling, composition and its modification, pests, diseases and weeds of feedstocks. Manuscripts concerning alternative energy based on biological mimicry are also encouraged (e.g. artificial photosynthesis).
Biological Residues/Co-products: from agricultural production, forestry and plantations (stover, sugar, bio-plastics, etc.), algae processing industries, and municipal sources (MSW).
Bioenergy and the Environment: ecosystem services, carbon mitigation, land use change, life cycle assessment, energy and greenhouse gas balances, water use, water quality, assessment of sustainability, and biodiversity issues.
Bioenergy Socioeconomics: examining the economic viability or social acceptability of crops, crops systems and their processing, including genetically modified organisms [GMOs], health impacts of bioenergy systems.
Bioenergy Policy: legislative developments affecting biofuels and bioenergy.
Bioenergy Systems Analysis: examining biological developments in a whole systems context.