关于ZF$\mathsf{ZF}中的Hausdorff算子$

Pub Date : 2023-07-24 DOI:10.1002/malq.202300004
Kyriakos Keremedis, Eleftherios Tachtsis
{"title":"关于ZF$\\mathsf{ZF}中的Hausdorff算子$","authors":"Kyriakos Keremedis,&nbsp;Eleftherios Tachtsis","doi":"10.1002/malq.202300004","DOIUrl":null,"url":null,"abstract":"<p>A Hausdorff space <math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>,</mo>\n <mi>T</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(X,\\mathcal {T})$</annotation>\n </semantics></math> is called effectively Hausdorff if there exists a function <i>F</i>—called a Hausdorff operator—such that, for every <math>\n <semantics>\n <mrow>\n <mi>x</mi>\n <mo>,</mo>\n <mi>y</mi>\n <mo>∈</mo>\n <mi>X</mi>\n </mrow>\n <annotation>$x,y\\in X$</annotation>\n </semantics></math> with <math>\n <semantics>\n <mrow>\n <mi>x</mi>\n <mo>≠</mo>\n <mi>y</mi>\n </mrow>\n <annotation>$x\\ne y$</annotation>\n </semantics></math>, <math>\n <semantics>\n <mrow>\n <mi>F</mi>\n <mo>(</mo>\n <mi>x</mi>\n <mo>,</mo>\n <mi>y</mi>\n <mo>)</mo>\n <mo>=</mo>\n <mo>(</mo>\n <mi>U</mi>\n <mo>,</mo>\n <mi>V</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$F(x,y)=(U,V)$</annotation>\n </semantics></math>, where <i>U</i> and <i>V</i> are disjoint open neighborhoods of <i>x</i> and <i>y</i>, respectively. Among other results, we establish the following in <math>\n <semantics>\n <mi>ZF</mi>\n <annotation>$\\mathsf {ZF}$</annotation>\n </semantics></math>, i.e., in Zermelo–Fraenkel set theory without the Axiom of Choice (<math>\n <semantics>\n <mi>AC</mi>\n <annotation>$\\mathsf {AC}$</annotation>\n </semantics></math>):</p><p>\n </p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Hausdorff operators in \\n \\n ZF\\n $\\\\mathsf {ZF}$\",\"authors\":\"Kyriakos Keremedis,&nbsp;Eleftherios Tachtsis\",\"doi\":\"10.1002/malq.202300004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A Hausdorff space <math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>X</mi>\\n <mo>,</mo>\\n <mi>T</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(X,\\\\mathcal {T})$</annotation>\\n </semantics></math> is called effectively Hausdorff if there exists a function <i>F</i>—called a Hausdorff operator—such that, for every <math>\\n <semantics>\\n <mrow>\\n <mi>x</mi>\\n <mo>,</mo>\\n <mi>y</mi>\\n <mo>∈</mo>\\n <mi>X</mi>\\n </mrow>\\n <annotation>$x,y\\\\in X$</annotation>\\n </semantics></math> with <math>\\n <semantics>\\n <mrow>\\n <mi>x</mi>\\n <mo>≠</mo>\\n <mi>y</mi>\\n </mrow>\\n <annotation>$x\\\\ne y$</annotation>\\n </semantics></math>, <math>\\n <semantics>\\n <mrow>\\n <mi>F</mi>\\n <mo>(</mo>\\n <mi>x</mi>\\n <mo>,</mo>\\n <mi>y</mi>\\n <mo>)</mo>\\n <mo>=</mo>\\n <mo>(</mo>\\n <mi>U</mi>\\n <mo>,</mo>\\n <mi>V</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$F(x,y)=(U,V)$</annotation>\\n </semantics></math>, where <i>U</i> and <i>V</i> are disjoint open neighborhoods of <i>x</i> and <i>y</i>, respectively. Among other results, we establish the following in <math>\\n <semantics>\\n <mi>ZF</mi>\\n <annotation>$\\\\mathsf {ZF}$</annotation>\\n </semantics></math>, i.e., in Zermelo–Fraenkel set theory without the Axiom of Choice (<math>\\n <semantics>\\n <mi>AC</mi>\\n <annotation>$\\\\mathsf {AC}$</annotation>\\n </semantics></math>):</p><p>\\n </p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/malq.202300004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202300004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

如果存在称为豪斯多夫算子的函数F,则豪斯多夫空间(X,T)$(X,\mathcal{T})$被有效地称为豪斯道夫,使得对于每个X,y∈X$X,y\in X$中X≠y$X\ne y$,F(x,y)=(U,V)$F(x)=(U,V)$,其中U和V分别是x和y的不相交的开邻域。在其他结果中,我们在ZF$\mathsf{ZF}$中,即在没有选择公理的Zermelo–Fraenkel集合论(AC$\mathsf{AC}$)中建立了以下结果:
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On Hausdorff operators in ZF $\mathsf {ZF}$

A Hausdorff space ( X , T ) $(X,\mathcal {T})$ is called effectively Hausdorff if there exists a function F—called a Hausdorff operator—such that, for every x , y X $x,y\in X$ with x y $x\ne y$ , F ( x , y ) = ( U , V ) $F(x,y)=(U,V)$ , where U and V are disjoint open neighborhoods of x and y, respectively. Among other results, we establish the following in ZF $\mathsf {ZF}$ , i.e., in Zermelo–Fraenkel set theory without the Axiom of Choice ( AC $\mathsf {AC}$ ):

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信