WKL$\mathsf{WKL}下实值连续函数的编码$

IF 0.4 4区 数学 Q4 LOGIC
Tatsuji Kawai
{"title":"WKL$\\mathsf{WKL}下实值连续函数的编码$","authors":"Tatsuji Kawai","doi":"10.1002/malq.202200031","DOIUrl":null,"url":null,"abstract":"<p>In the context of constructive reverse mathematics, we show that weak Kőnig's lemma (<math>\n <semantics>\n <mi>WKL</mi>\n <annotation>$\\mathsf {WKL}$</annotation>\n </semantics></math>) implies that every pointwise continuous function <math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mo>:</mo>\n <mo>[</mo>\n <mn>0</mn>\n <mo>,</mo>\n <mn>1</mn>\n <mo>]</mo>\n <mo>→</mo>\n <mi>R</mi>\n </mrow>\n <annotation>$f : [0,1]\\rightarrow \\mathbb {R}$</annotation>\n </semantics></math> is induced by a code in the sense of reverse mathematics. This, combined with the fact that <math>\n <semantics>\n <mi>WKL</mi>\n <annotation>$\\mathsf {WKL}$</annotation>\n </semantics></math> implies the Fan theorem, shows that <math>\n <semantics>\n <mi>WKL</mi>\n <annotation>$\\mathsf {WKL}$</annotation>\n </semantics></math> implies the uniform continuity theorem: every pointwise continuous function <math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mo>:</mo>\n <mo>[</mo>\n <mn>0</mn>\n <mo>,</mo>\n <mn>1</mn>\n <mo>]</mo>\n <mo>→</mo>\n <mi>R</mi>\n </mrow>\n <annotation>$f : [0,1]\\rightarrow \\mathbb {R}$</annotation>\n </semantics></math> has a modulus of uniform continuity. Our results are obtained in Heyting arithmetic in all finite types with quantifier-free axiom of choice.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coding of real-valued continuous functions under \\n \\n WKL\\n $\\\\mathsf {WKL}$\",\"authors\":\"Tatsuji Kawai\",\"doi\":\"10.1002/malq.202200031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the context of constructive reverse mathematics, we show that weak Kőnig's lemma (<math>\\n <semantics>\\n <mi>WKL</mi>\\n <annotation>$\\\\mathsf {WKL}$</annotation>\\n </semantics></math>) implies that every pointwise continuous function <math>\\n <semantics>\\n <mrow>\\n <mi>f</mi>\\n <mo>:</mo>\\n <mo>[</mo>\\n <mn>0</mn>\\n <mo>,</mo>\\n <mn>1</mn>\\n <mo>]</mo>\\n <mo>→</mo>\\n <mi>R</mi>\\n </mrow>\\n <annotation>$f : [0,1]\\\\rightarrow \\\\mathbb {R}$</annotation>\\n </semantics></math> is induced by a code in the sense of reverse mathematics. This, combined with the fact that <math>\\n <semantics>\\n <mi>WKL</mi>\\n <annotation>$\\\\mathsf {WKL}$</annotation>\\n </semantics></math> implies the Fan theorem, shows that <math>\\n <semantics>\\n <mi>WKL</mi>\\n <annotation>$\\\\mathsf {WKL}$</annotation>\\n </semantics></math> implies the uniform continuity theorem: every pointwise continuous function <math>\\n <semantics>\\n <mrow>\\n <mi>f</mi>\\n <mo>:</mo>\\n <mo>[</mo>\\n <mn>0</mn>\\n <mo>,</mo>\\n <mn>1</mn>\\n <mo>]</mo>\\n <mo>→</mo>\\n <mi>R</mi>\\n </mrow>\\n <annotation>$f : [0,1]\\\\rightarrow \\\\mathbb {R}$</annotation>\\n </semantics></math> has a modulus of uniform continuity. Our results are obtained in Heyting arithmetic in all finite types with quantifier-free axiom of choice.</p>\",\"PeriodicalId\":49864,\"journal\":{\"name\":\"Mathematical Logic Quarterly\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Logic Quarterly\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/malq.202200031\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Logic Quarterly","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202200031","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

摘要

在构造逆数学的背景下,我们证明了弱König引理(WKL$\mathsf{WKL}$)暗示了每个逐点连续函数f:[0,1]→ R$f:[0,1]\rightarrow\mathbb{R}$是由逆向数学意义上的代码引起的。结合WKL$\mathsf{WKL}$隐含范定理的事实,表明WKL$\mathsf{WKL}$隐含一致连续性定理:每个逐点连续函数f:[0,1]→ R$f:[0,1]\rightarrow\mathbb{R}$具有一致连续模。我们的结果是在Heyting算法中得到的,在所有有限类型中都有无量词选择公理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coding of real-valued continuous functions under WKL $\mathsf {WKL}$

In the context of constructive reverse mathematics, we show that weak Kőnig's lemma ( WKL $\mathsf {WKL}$ ) implies that every pointwise continuous function f : [ 0 , 1 ] R $f : [0,1]\rightarrow \mathbb {R}$ is induced by a code in the sense of reverse mathematics. This, combined with the fact that WKL $\mathsf {WKL}$ implies the Fan theorem, shows that WKL $\mathsf {WKL}$ implies the uniform continuity theorem: every pointwise continuous function f : [ 0 , 1 ] R $f : [0,1]\rightarrow \mathbb {R}$ has a modulus of uniform continuity. Our results are obtained in Heyting arithmetic in all finite types with quantifier-free axiom of choice.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
49
审稿时长
>12 weeks
期刊介绍: Mathematical Logic Quarterly publishes original contributions on mathematical logic and foundations of mathematics and related areas, such as general logic, model theory, recursion theory, set theory, proof theory and constructive mathematics, algebraic logic, nonstandard models, and logical aspects of theoretical computer science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信