Denise L. Lindsay, Xin Guan, Nathan E. Harms, James T. Cronin, Laura A. Meyerson, Richard F. Lance
{"title":"美国三个芦苇亚种遗传鉴别的DNA分析","authors":"Denise L. Lindsay, Xin Guan, Nathan E. Harms, James T. Cronin, Laura A. Meyerson, Richard F. Lance","doi":"10.1002/aps3.11512","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Premise</h3>\n \n <p>To genetically discriminate subspecies of the common reed (<i>Phragmites australis</i>), we developed real-time quantitative (qPCR) assays for identifying <i>P. australis</i> subsp. <i>americanus</i>, <i>P. australis</i> subsp. <i>australis</i>, and <i>P. australis</i> subsp. <i>berlandieri</i>.</p>\n </section>\n \n <section>\n \n <h3> Methods and Results</h3>\n \n <p>Utilizing study-generated chloroplast DNA sequences, we developed three novel qPCR assays. Assays were verified on individuals of each subspecies and against two non-target species, <i>Arundo donax</i> and <i>Phalaris arundinacea</i>. One assay amplifies only <i>P. australis</i> subsp. <i>americanus</i>, one amplifies <i>P. australis</i> subsp. <i>australis</i> and/or <i>P. australis</i> subsp. <i>berlandieri</i>, and one amplifies <i>P. australis</i> subsp. <i>americanus</i> and/or <i>P. australis</i> subsp. <i>australis</i>. This protocol enhances currently available rapid identification methods by providing genetic discrimination of all three subspecies.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>The newly developed assays were validated using <i>P. australis</i> samples from across the United States. Application of these assays outside of this geographic range should be preceded by additional testing.</p>\n </section>\n </div>","PeriodicalId":8022,"journal":{"name":"Applications in Plant Sciences","volume":"11 2","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aps3.11512","citationCount":"0","resultStr":"{\"title\":\"DNA assays for genetic discrimination of three Phragmites australis subspecies in the United States\",\"authors\":\"Denise L. Lindsay, Xin Guan, Nathan E. Harms, James T. Cronin, Laura A. Meyerson, Richard F. Lance\",\"doi\":\"10.1002/aps3.11512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Premise</h3>\\n \\n <p>To genetically discriminate subspecies of the common reed (<i>Phragmites australis</i>), we developed real-time quantitative (qPCR) assays for identifying <i>P. australis</i> subsp. <i>americanus</i>, <i>P. australis</i> subsp. <i>australis</i>, and <i>P. australis</i> subsp. <i>berlandieri</i>.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods and Results</h3>\\n \\n <p>Utilizing study-generated chloroplast DNA sequences, we developed three novel qPCR assays. Assays were verified on individuals of each subspecies and against two non-target species, <i>Arundo donax</i> and <i>Phalaris arundinacea</i>. One assay amplifies only <i>P. australis</i> subsp. <i>americanus</i>, one amplifies <i>P. australis</i> subsp. <i>australis</i> and/or <i>P. australis</i> subsp. <i>berlandieri</i>, and one amplifies <i>P. australis</i> subsp. <i>americanus</i> and/or <i>P. australis</i> subsp. <i>australis</i>. This protocol enhances currently available rapid identification methods by providing genetic discrimination of all three subspecies.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusions</h3>\\n \\n <p>The newly developed assays were validated using <i>P. australis</i> samples from across the United States. Application of these assays outside of this geographic range should be preceded by additional testing.</p>\\n </section>\\n </div>\",\"PeriodicalId\":8022,\"journal\":{\"name\":\"Applications in Plant Sciences\",\"volume\":\"11 2\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aps3.11512\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applications in Plant Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aps3.11512\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applications in Plant Sciences","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aps3.11512","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
DNA assays for genetic discrimination of three Phragmites australis subspecies in the United States
Premise
To genetically discriminate subspecies of the common reed (Phragmites australis), we developed real-time quantitative (qPCR) assays for identifying P. australis subsp. americanus, P. australis subsp. australis, and P. australis subsp. berlandieri.
Methods and Results
Utilizing study-generated chloroplast DNA sequences, we developed three novel qPCR assays. Assays were verified on individuals of each subspecies and against two non-target species, Arundo donax and Phalaris arundinacea. One assay amplifies only P. australis subsp. americanus, one amplifies P. australis subsp. australis and/or P. australis subsp. berlandieri, and one amplifies P. australis subsp. americanus and/or P. australis subsp. australis. This protocol enhances currently available rapid identification methods by providing genetic discrimination of all three subspecies.
Conclusions
The newly developed assays were validated using P. australis samples from across the United States. Application of these assays outside of this geographic range should be preceded by additional testing.
期刊介绍:
Applications in Plant Sciences (APPS) is a monthly, peer-reviewed, open access journal promoting the rapid dissemination of newly developed, innovative tools and protocols in all areas of the plant sciences, including genetics, structure, function, development, evolution, systematics, and ecology. Given the rapid progress today in technology and its application in the plant sciences, the goal of APPS is to foster communication within the plant science community to advance scientific research. APPS is a publication of the Botanical Society of America, originating in 2009 as the American Journal of Botany''s online-only section, AJB Primer Notes & Protocols in the Plant Sciences.
APPS publishes the following types of articles: (1) Protocol Notes describe new methods and technological advancements; (2) Genomic Resources Articles characterize the development and demonstrate the usefulness of newly developed genomic resources, including transcriptomes; (3) Software Notes detail new software applications; (4) Application Articles illustrate the application of a new protocol, method, or software application within the context of a larger study; (5) Review Articles evaluate available techniques, methods, or protocols; (6) Primer Notes report novel genetic markers with evidence of wide applicability.