Fabian Steininger, Ramya Veerubhotla, Niels Peter Revsbech, Ugo Marzocchi, Klaus Koren
{"title":"从两个传感器到一个传感器:更好地了解氧-硫化物界面","authors":"Fabian Steininger, Ramya Veerubhotla, Niels Peter Revsbech, Ugo Marzocchi, Klaus Koren","doi":"10.1002/lom3.10568","DOIUrl":null,"url":null,"abstract":"<p>Intense biogeochemical transformations in sediments and biofilms may occur over sub-mm distances. Our current understanding of those transformations in such narrowly stratified environments has been facilitated by the introduction of microsensors. Until now most studies have been conducted using individual sensors for the various chemical species, and careful vertical alignment of the sensor tips is then essential for the meaningful interpretation of the resulting data. For instance, the determination of total dissolved sulfide (TDS) at high resolution requires perfect alignment of sensors for H<sub>2</sub>S and pH, as the pKa for H<sub>2</sub>S is close to ambient pH. In this study, we show how a recently developed TDS sensor and a new combined H<sub>2</sub>S/O<sub>2</sub> microsensor can improve the analysis of sulfidic environments including the oxygen–sulfide interface. The TDS sensor does not require pH correction unlike the conventional H<sub>2</sub>S sensor, and it thus eliminates the need for a simultaneous pH measurement. The combined sensor allows for perfect alignment of H<sub>2</sub>S and O<sub>2</sub> micro profiles and makes it possible to not only more accurately estimate fluxes, but also to determine overlapping zones of oxygen and dissolved sulfide at very high resolution.</p>","PeriodicalId":18145,"journal":{"name":"Limnology and Oceanography: Methods","volume":"21 10","pages":"606-614"},"PeriodicalIF":2.1000,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lom3.10568","citationCount":"0","resultStr":"{\"title\":\"From two sensors to a single sensor: Better understanding of oxygen–sulfide interfaces\",\"authors\":\"Fabian Steininger, Ramya Veerubhotla, Niels Peter Revsbech, Ugo Marzocchi, Klaus Koren\",\"doi\":\"10.1002/lom3.10568\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Intense biogeochemical transformations in sediments and biofilms may occur over sub-mm distances. Our current understanding of those transformations in such narrowly stratified environments has been facilitated by the introduction of microsensors. Until now most studies have been conducted using individual sensors for the various chemical species, and careful vertical alignment of the sensor tips is then essential for the meaningful interpretation of the resulting data. For instance, the determination of total dissolved sulfide (TDS) at high resolution requires perfect alignment of sensors for H<sub>2</sub>S and pH, as the pKa for H<sub>2</sub>S is close to ambient pH. In this study, we show how a recently developed TDS sensor and a new combined H<sub>2</sub>S/O<sub>2</sub> microsensor can improve the analysis of sulfidic environments including the oxygen–sulfide interface. The TDS sensor does not require pH correction unlike the conventional H<sub>2</sub>S sensor, and it thus eliminates the need for a simultaneous pH measurement. The combined sensor allows for perfect alignment of H<sub>2</sub>S and O<sub>2</sub> micro profiles and makes it possible to not only more accurately estimate fluxes, but also to determine overlapping zones of oxygen and dissolved sulfide at very high resolution.</p>\",\"PeriodicalId\":18145,\"journal\":{\"name\":\"Limnology and Oceanography: Methods\",\"volume\":\"21 10\",\"pages\":\"606-614\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lom3.10568\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Limnology and Oceanography: Methods\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/lom3.10568\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"LIMNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Limnology and Oceanography: Methods","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/lom3.10568","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LIMNOLOGY","Score":null,"Total":0}
From two sensors to a single sensor: Better understanding of oxygen–sulfide interfaces
Intense biogeochemical transformations in sediments and biofilms may occur over sub-mm distances. Our current understanding of those transformations in such narrowly stratified environments has been facilitated by the introduction of microsensors. Until now most studies have been conducted using individual sensors for the various chemical species, and careful vertical alignment of the sensor tips is then essential for the meaningful interpretation of the resulting data. For instance, the determination of total dissolved sulfide (TDS) at high resolution requires perfect alignment of sensors for H2S and pH, as the pKa for H2S is close to ambient pH. In this study, we show how a recently developed TDS sensor and a new combined H2S/O2 microsensor can improve the analysis of sulfidic environments including the oxygen–sulfide interface. The TDS sensor does not require pH correction unlike the conventional H2S sensor, and it thus eliminates the need for a simultaneous pH measurement. The combined sensor allows for perfect alignment of H2S and O2 micro profiles and makes it possible to not only more accurately estimate fluxes, but also to determine overlapping zones of oxygen and dissolved sulfide at very high resolution.
期刊介绍:
Limnology and Oceanography: Methods (ISSN 1541-5856) is a companion to ASLO''s top-rated journal Limnology and Oceanography, and articles are held to the same high standards. In order to provide the most rapid publication consistent with high standards, Limnology and Oceanography: Methods appears in electronic format only, and the entire submission and review system is online. Articles are posted as soon as they are accepted and formatted for publication.
Limnology and Oceanography: Methods will consider manuscripts whose primary focus is methodological, and that deal with problems in the aquatic sciences. Manuscripts may present new measurement equipment, techniques for analyzing observations or samples, methods for understanding and interpreting information, analyses of metadata to examine the effectiveness of approaches, invited and contributed reviews and syntheses, and techniques for communicating and teaching in the aquatic sciences.