{"title":"经典仿射空间中最大全各向同性平面的Cameron–Liebler集","authors":"Jun Guo, Lingyu Wan","doi":"10.1002/jcd.21909","DOIUrl":null,"url":null,"abstract":"<p>Let <math>\n <semantics>\n <mrow>\n <mi>A</mi>\n <mi>C</mi>\n <mi>G</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mn>2</mn>\n <mi>ν</mi>\n <mo>,</mo>\n <msub>\n <mi>F</mi>\n <mi>q</mi>\n </msub>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $ACG(2\\nu ,{{\\mathbb{F}}}_{q})$</annotation>\n </semantics></math> be the <math>\n <semantics>\n <mrow>\n <mn>2</mn>\n <mi>ν</mi>\n </mrow>\n <annotation> $2\\nu $</annotation>\n </semantics></math>-dimensional classical affine space with parameter <math>\n <semantics>\n <mrow>\n <mi>e</mi>\n </mrow>\n <annotation> $e$</annotation>\n </semantics></math> over a <math>\n <semantics>\n <mrow>\n <mi>q</mi>\n </mrow>\n <annotation> $q$</annotation>\n </semantics></math>-element finite field <math>\n <semantics>\n <mrow>\n <msub>\n <mi>F</mi>\n <mi>q</mi>\n </msub>\n </mrow>\n <annotation> ${{\\mathbb{F}}}_{q}$</annotation>\n </semantics></math>, and <math>\n <semantics>\n <mrow>\n <msub>\n <mi>O</mi>\n <mi>ν</mi>\n </msub>\n </mrow>\n <annotation> ${{\\mathscr{O}}}_{\\nu }$</annotation>\n </semantics></math> be the set of all maximal totally isotropic flats in <math>\n <semantics>\n <mrow>\n <mi>A</mi>\n <mi>C</mi>\n <mi>G</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mn>2</mn>\n <mi>ν</mi>\n <mo>,</mo>\n <msub>\n <mi>F</mi>\n <mi>q</mi>\n </msub>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $ACG(2\\nu ,{{\\mathbb{F}}}_{q})$</annotation>\n </semantics></math>. In this paper, we discuss Cameron–Liebler sets in <math>\n <semantics>\n <mrow>\n <msub>\n <mi>O</mi>\n <mi>ν</mi>\n </msub>\n </mrow>\n <annotation> ${{\\mathscr{O}}}_{\\nu }$</annotation>\n </semantics></math>, obtain several equivalent definitions and present some classification results.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"31 11","pages":"547-574"},"PeriodicalIF":0.5000,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cameron–Liebler sets for maximal totally isotropic flats in classical affine spaces\",\"authors\":\"Jun Guo, Lingyu Wan\",\"doi\":\"10.1002/jcd.21909\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <math>\\n <semantics>\\n <mrow>\\n <mi>A</mi>\\n <mi>C</mi>\\n <mi>G</mi>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mn>2</mn>\\n <mi>ν</mi>\\n <mo>,</mo>\\n <msub>\\n <mi>F</mi>\\n <mi>q</mi>\\n </msub>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $ACG(2\\\\nu ,{{\\\\mathbb{F}}}_{q})$</annotation>\\n </semantics></math> be the <math>\\n <semantics>\\n <mrow>\\n <mn>2</mn>\\n <mi>ν</mi>\\n </mrow>\\n <annotation> $2\\\\nu $</annotation>\\n </semantics></math>-dimensional classical affine space with parameter <math>\\n <semantics>\\n <mrow>\\n <mi>e</mi>\\n </mrow>\\n <annotation> $e$</annotation>\\n </semantics></math> over a <math>\\n <semantics>\\n <mrow>\\n <mi>q</mi>\\n </mrow>\\n <annotation> $q$</annotation>\\n </semantics></math>-element finite field <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>F</mi>\\n <mi>q</mi>\\n </msub>\\n </mrow>\\n <annotation> ${{\\\\mathbb{F}}}_{q}$</annotation>\\n </semantics></math>, and <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>O</mi>\\n <mi>ν</mi>\\n </msub>\\n </mrow>\\n <annotation> ${{\\\\mathscr{O}}}_{\\\\nu }$</annotation>\\n </semantics></math> be the set of all maximal totally isotropic flats in <math>\\n <semantics>\\n <mrow>\\n <mi>A</mi>\\n <mi>C</mi>\\n <mi>G</mi>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mn>2</mn>\\n <mi>ν</mi>\\n <mo>,</mo>\\n <msub>\\n <mi>F</mi>\\n <mi>q</mi>\\n </msub>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $ACG(2\\\\nu ,{{\\\\mathbb{F}}}_{q})$</annotation>\\n </semantics></math>. In this paper, we discuss Cameron–Liebler sets in <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>O</mi>\\n <mi>ν</mi>\\n </msub>\\n </mrow>\\n <annotation> ${{\\\\mathscr{O}}}_{\\\\nu }$</annotation>\\n </semantics></math>, obtain several equivalent definitions and present some classification results.</p>\",\"PeriodicalId\":15389,\"journal\":{\"name\":\"Journal of Combinatorial Designs\",\"volume\":\"31 11\",\"pages\":\"547-574\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Designs\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21909\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Designs","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21909","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
设A C G(2Γ,Fq)$ACG(2\nu,{\mathbb{F}}}_{q})$是q上参数为e$e$的2μ$2\nu$维经典仿射空间$q$元有限域Fq${\mathbb{F}}_,并且OΓ${\mathscr{O}}}_{\nu}$是A C G中所有最大全各向同性平面的集合(2Γ,Fq)$ACG(2\nu,{\mathbb{F}}}_{q})$。本文讨论了OΓ${\mathscr{O}}_{\nu}$中的Cameron–Liebler集,得到了几个等价的定义,并给出了一些分类结果。
Cameron–Liebler sets for maximal totally isotropic flats in classical affine spaces
Let be the -dimensional classical affine space with parameter over a -element finite field , and be the set of all maximal totally isotropic flats in . In this paper, we discuss Cameron–Liebler sets in , obtain several equivalent definitions and present some classification results.
期刊介绍:
The Journal of Combinatorial Designs is an international journal devoted to the timely publication of the most influential papers in the area of combinatorial design theory. All topics in design theory, and in which design theory has important applications, are covered, including:
block designs, t-designs, pairwise balanced designs and group divisible designs
Latin squares, quasigroups, and related algebras
computational methods in design theory
construction methods
applications in computer science, experimental design theory, and coding theory
graph decompositions, factorizations, and design-theoretic techniques in graph theory and extremal combinatorics
finite geometry and its relation with design theory.
algebraic aspects of design theory.
Researchers and scientists can depend on the Journal of Combinatorial Designs for the most recent developments in this rapidly growing field, and to provide a forum for both theoretical research and applications. All papers appearing in the Journal of Combinatorial Designs are carefully peer refereed.