{"title":"LA-MC-ICP-MS测量硼同位素的不准确性来源","authors":"Jan Fietzke, Eleni Anagnostou","doi":"10.1111/ggr.12511","DOIUrl":null,"url":null,"abstract":"<p>Laser ablation multi-collector-inductively coupled plasma-mass spectrometry (LA-MC-ICP-MS) has become a valuable tool for the <i>in situ</i> measurement of the boron isotope composition of geological samples at high (tens to hundreds of μm) spatial resolution. That said, this application suffers from significant analytical challenges. We focus in this study on the underlying processes of two of the main causes for inaccuracies using this technique. We provide empirical evidence that not only Ca ions (Sadekov <i>et al</i>. 2019, Standish <i>et al</i>. 2019, Evans <i>et al</i>. 2021) but also Ar ions, that are reflected within the flight tube of the mass spectrometer, are the source for previously reported issues with spectral baselines. We also address the impact of plasma conditions on the instrumental mass fractionation as a source for matrix- and mass-load-related analytical biases. Comparing experimental data with the results of a dedicated release and diffusion model (RDM) we estimate that a close to complete (~ 97%) release of boron from the sample aerosol is needed to allow for consistently accurate LA boron isotope measurement results without the need for corrections.</p>","PeriodicalId":12631,"journal":{"name":"Geostandards and Geoanalytical Research","volume":"47 3","pages":"481-492"},"PeriodicalIF":2.7000,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ggr.12511","citationCount":"0","resultStr":"{\"title\":\"Sources of Inaccuracy in Boron Isotope Measurement Using LA-MC-ICP-MS\",\"authors\":\"Jan Fietzke, Eleni Anagnostou\",\"doi\":\"10.1111/ggr.12511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Laser ablation multi-collector-inductively coupled plasma-mass spectrometry (LA-MC-ICP-MS) has become a valuable tool for the <i>in situ</i> measurement of the boron isotope composition of geological samples at high (tens to hundreds of μm) spatial resolution. That said, this application suffers from significant analytical challenges. We focus in this study on the underlying processes of two of the main causes for inaccuracies using this technique. We provide empirical evidence that not only Ca ions (Sadekov <i>et al</i>. 2019, Standish <i>et al</i>. 2019, Evans <i>et al</i>. 2021) but also Ar ions, that are reflected within the flight tube of the mass spectrometer, are the source for previously reported issues with spectral baselines. We also address the impact of plasma conditions on the instrumental mass fractionation as a source for matrix- and mass-load-related analytical biases. Comparing experimental data with the results of a dedicated release and diffusion model (RDM) we estimate that a close to complete (~ 97%) release of boron from the sample aerosol is needed to allow for consistently accurate LA boron isotope measurement results without the need for corrections.</p>\",\"PeriodicalId\":12631,\"journal\":{\"name\":\"Geostandards and Geoanalytical Research\",\"volume\":\"47 3\",\"pages\":\"481-492\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ggr.12511\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geostandards and Geoanalytical Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ggr.12511\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geostandards and Geoanalytical Research","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ggr.12511","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Sources of Inaccuracy in Boron Isotope Measurement Using LA-MC-ICP-MS
Laser ablation multi-collector-inductively coupled plasma-mass spectrometry (LA-MC-ICP-MS) has become a valuable tool for the in situ measurement of the boron isotope composition of geological samples at high (tens to hundreds of μm) spatial resolution. That said, this application suffers from significant analytical challenges. We focus in this study on the underlying processes of two of the main causes for inaccuracies using this technique. We provide empirical evidence that not only Ca ions (Sadekov et al. 2019, Standish et al. 2019, Evans et al. 2021) but also Ar ions, that are reflected within the flight tube of the mass spectrometer, are the source for previously reported issues with spectral baselines. We also address the impact of plasma conditions on the instrumental mass fractionation as a source for matrix- and mass-load-related analytical biases. Comparing experimental data with the results of a dedicated release and diffusion model (RDM) we estimate that a close to complete (~ 97%) release of boron from the sample aerosol is needed to allow for consistently accurate LA boron isotope measurement results without the need for corrections.
期刊介绍:
Geostandards & Geoanalytical Research is an international journal dedicated to advancing the science of reference materials, analytical techniques and data quality relevant to the chemical analysis of geological and environmental samples. Papers are accepted for publication following peer review.