口腔硬组织缺损模型用于评估植入材料的再生效果

Xiaowen Sun, Boon Chin Heng, Xuehui Zhang
{"title":"口腔硬组织缺损模型用于评估植入材料的再生效果","authors":"Xiaowen Sun,&nbsp;Boon Chin Heng,&nbsp;Xuehui Zhang","doi":"10.1002/mba2.38","DOIUrl":null,"url":null,"abstract":"<p>Oral hard tissue defects are common concomitant symptoms of oral diseases, which have poor prognosis and often exert detrimental effects on the physical and mental health of patients. Implant materials can accelerate the regeneration of oral hard tissue defects (such as periodontal defects, alveolar bone defects, maxilla bone defects, mandible bone defects, alveolar ridge expansion, and site preservation), but their regenerative efficacy and biocompatibility need to be preclinically validated in vivo with animal-based oral hard tissue defect models. The choice of oral hard tissue defect model depends on the regenerative effect and intended application of the tested implant material. At the same time, factors that need to be considered include techniques for constructing the particular defect model, the scaffold/graft material used, the availability of animal model evaluation techniques and instrumentation, as well as costs and time constraints. In this article, we summarize the common oral hard tissue defect models in various animal species (such as periodontal model, jaw defect model, and implantation defect model) that can be used to evaluate the regenerative efficacy and biocompatibility of implant materials.</p>","PeriodicalId":100901,"journal":{"name":"MedComm – Biomaterials and Applications","volume":"2 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mba2.38","citationCount":"1","resultStr":"{\"title\":\"Oral hard tissue defect models for evaluating the regenerative efficacy of implant materials\",\"authors\":\"Xiaowen Sun,&nbsp;Boon Chin Heng,&nbsp;Xuehui Zhang\",\"doi\":\"10.1002/mba2.38\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Oral hard tissue defects are common concomitant symptoms of oral diseases, which have poor prognosis and often exert detrimental effects on the physical and mental health of patients. Implant materials can accelerate the regeneration of oral hard tissue defects (such as periodontal defects, alveolar bone defects, maxilla bone defects, mandible bone defects, alveolar ridge expansion, and site preservation), but their regenerative efficacy and biocompatibility need to be preclinically validated in vivo with animal-based oral hard tissue defect models. The choice of oral hard tissue defect model depends on the regenerative effect and intended application of the tested implant material. At the same time, factors that need to be considered include techniques for constructing the particular defect model, the scaffold/graft material used, the availability of animal model evaluation techniques and instrumentation, as well as costs and time constraints. In this article, we summarize the common oral hard tissue defect models in various animal species (such as periodontal model, jaw defect model, and implantation defect model) that can be used to evaluate the regenerative efficacy and biocompatibility of implant materials.</p>\",\"PeriodicalId\":100901,\"journal\":{\"name\":\"MedComm – Biomaterials and Applications\",\"volume\":\"2 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mba2.38\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MedComm – Biomaterials and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mba2.38\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MedComm – Biomaterials and Applications","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mba2.38","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

口腔硬组织缺损是口腔疾病常见的伴随症状,预后不良,经常对患者的身心健康产生不利影响。植入材料可以加速口腔硬组织缺损(如牙周缺损、牙槽骨缺损、上颌骨缺损、下颌骨缺损、牙槽嵴扩张和部位保存)的再生,但其再生功效和生物相容性需要通过基于动物的口腔硬组织缺陷模型在体内进行临床前验证。口腔硬组织缺损模型的选择取决于测试植入物材料的再生效果和预期应用。同时,需要考虑的因素包括构建特定缺陷模型的技术、使用的支架/移植物材料、动物模型评估技术和仪器的可用性,以及成本和时间限制。本文总结了各种动物常见的口腔硬组织缺损模型(如牙周模型、颌骨缺损模型和种植体缺损模型),可用于评估种植体材料的再生功效和生物相容性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Oral hard tissue defect models for evaluating the regenerative efficacy of implant materials

Oral hard tissue defect models for evaluating the regenerative efficacy of implant materials

Oral hard tissue defects are common concomitant symptoms of oral diseases, which have poor prognosis and often exert detrimental effects on the physical and mental health of patients. Implant materials can accelerate the regeneration of oral hard tissue defects (such as periodontal defects, alveolar bone defects, maxilla bone defects, mandible bone defects, alveolar ridge expansion, and site preservation), but their regenerative efficacy and biocompatibility need to be preclinically validated in vivo with animal-based oral hard tissue defect models. The choice of oral hard tissue defect model depends on the regenerative effect and intended application of the tested implant material. At the same time, factors that need to be considered include techniques for constructing the particular defect model, the scaffold/graft material used, the availability of animal model evaluation techniques and instrumentation, as well as costs and time constraints. In this article, we summarize the common oral hard tissue defect models in various animal species (such as periodontal model, jaw defect model, and implantation defect model) that can be used to evaluate the regenerative efficacy and biocompatibility of implant materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信