Shiwang Xie, Jing Huang, Andreia Trindade Pereira, Lingling Xu, Dan Luo, Zhou Li
{"title":"基于材料和设备的肿瘤电刺激治疗的新趋势","authors":"Shiwang Xie, Jing Huang, Andreia Trindade Pereira, Lingling Xu, Dan Luo, Zhou Li","doi":"10.1002/bmm2.12038","DOIUrl":null,"url":null,"abstract":"<p>Electrical stimulation (ES), as one of the physical therapy modalities for tumors, has attracted extensive attention of researchers due to its promising efficacy. With the continuous development of material science, nanotechnology, and micro/nano processing techniques, novel electroactive nanomaterials and delicately designed devices have emerged to realize innovative ES therapies, which provide more possibilities and approaches for tumor treatment. Meanwhile, exploring the molecular biological mechanisms underlying different ES modalities affecting tumor cells and their immune microenvironment is also an unresolved hotspot emerging from the current biomedical engineering research. Focusing on the above research interests, in this review, we systematically summarized the effects of different ES parameters on the subcellular structure of tumor cells and the tumor immune microenvironment (TIME) in conjunction with the involved signaling pathways. In addition, we also reviewed the latest progress in novel self-powered devices and electroactive nanomaterials for tumor therapy. Finally, the prospects for the development of electrostimulation tumor therapy are also discussed, bringing inspiration for the development of new physical therapy strategies in the future.</p>","PeriodicalId":100191,"journal":{"name":"BMEMat","volume":"1 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bmm2.12038","citationCount":"3","resultStr":"{\"title\":\"Emerging trends in materials and devices-based electric stimulation therapy for tumors\",\"authors\":\"Shiwang Xie, Jing Huang, Andreia Trindade Pereira, Lingling Xu, Dan Luo, Zhou Li\",\"doi\":\"10.1002/bmm2.12038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Electrical stimulation (ES), as one of the physical therapy modalities for tumors, has attracted extensive attention of researchers due to its promising efficacy. With the continuous development of material science, nanotechnology, and micro/nano processing techniques, novel electroactive nanomaterials and delicately designed devices have emerged to realize innovative ES therapies, which provide more possibilities and approaches for tumor treatment. Meanwhile, exploring the molecular biological mechanisms underlying different ES modalities affecting tumor cells and their immune microenvironment is also an unresolved hotspot emerging from the current biomedical engineering research. Focusing on the above research interests, in this review, we systematically summarized the effects of different ES parameters on the subcellular structure of tumor cells and the tumor immune microenvironment (TIME) in conjunction with the involved signaling pathways. In addition, we also reviewed the latest progress in novel self-powered devices and electroactive nanomaterials for tumor therapy. Finally, the prospects for the development of electrostimulation tumor therapy are also discussed, bringing inspiration for the development of new physical therapy strategies in the future.</p>\",\"PeriodicalId\":100191,\"journal\":{\"name\":\"BMEMat\",\"volume\":\"1 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bmm2.12038\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMEMat\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bmm2.12038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMEMat","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bmm2.12038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Emerging trends in materials and devices-based electric stimulation therapy for tumors
Electrical stimulation (ES), as one of the physical therapy modalities for tumors, has attracted extensive attention of researchers due to its promising efficacy. With the continuous development of material science, nanotechnology, and micro/nano processing techniques, novel electroactive nanomaterials and delicately designed devices have emerged to realize innovative ES therapies, which provide more possibilities and approaches for tumor treatment. Meanwhile, exploring the molecular biological mechanisms underlying different ES modalities affecting tumor cells and their immune microenvironment is also an unresolved hotspot emerging from the current biomedical engineering research. Focusing on the above research interests, in this review, we systematically summarized the effects of different ES parameters on the subcellular structure of tumor cells and the tumor immune microenvironment (TIME) in conjunction with the involved signaling pathways. In addition, we also reviewed the latest progress in novel self-powered devices and electroactive nanomaterials for tumor therapy. Finally, the prospects for the development of electrostimulation tumor therapy are also discussed, bringing inspiration for the development of new physical therapy strategies in the future.