隐含波动率的对数矩公式

IF 1.6 3区 经济学 Q3 BUSINESS, FINANCE
Vimal Raval, Antoine Jacquier
{"title":"隐含波动率的对数矩公式","authors":"Vimal Raval,&nbsp;Antoine Jacquier","doi":"10.1111/mafi.12396","DOIUrl":null,"url":null,"abstract":"<p>We revisit the foundational Moment Formula proved by Roger Lee fifteen years ago. We show that in the absence of arbitrage, if the underlying stock price at time <i>T</i> admits finite log-moments <math>\n <semantics>\n <mrow>\n <mi>E</mi>\n <mo>[</mo>\n <mo>|</mo>\n <mi>log</mi>\n <msub>\n <mi>S</mi>\n <mi>T</mi>\n </msub>\n <msup>\n <mo>|</mo>\n <mi>q</mi>\n </msup>\n <mo>]</mo>\n </mrow>\n <annotation>$\\mathbb {E}[|\\log S_T|^q]$</annotation>\n </semantics></math> for some positive <i>q</i>, the arbitrage-free growth in the left wing of the implied volatility smile for <i>T</i> is less constrained than Lee's bound. The result is rationalized by a market trading discretely monitored variance swaps wherein the payoff is a function of squared log-returns, and requires no assumption for the underlying price to admit any negative moment. In this respect, the result can be derived from a model-independent setup. As a byproduct, we relax the moment assumptions on the stock price to provide a new proof of the notorious Gatheral–Fukasawa formula expressing variance swaps in terms of the implied volatility.</p>","PeriodicalId":49867,"journal":{"name":"Mathematical Finance","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mafi.12396","citationCount":"2","resultStr":"{\"title\":\"The log-moment formula for implied volatility\",\"authors\":\"Vimal Raval,&nbsp;Antoine Jacquier\",\"doi\":\"10.1111/mafi.12396\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We revisit the foundational Moment Formula proved by Roger Lee fifteen years ago. We show that in the absence of arbitrage, if the underlying stock price at time <i>T</i> admits finite log-moments <math>\\n <semantics>\\n <mrow>\\n <mi>E</mi>\\n <mo>[</mo>\\n <mo>|</mo>\\n <mi>log</mi>\\n <msub>\\n <mi>S</mi>\\n <mi>T</mi>\\n </msub>\\n <msup>\\n <mo>|</mo>\\n <mi>q</mi>\\n </msup>\\n <mo>]</mo>\\n </mrow>\\n <annotation>$\\\\mathbb {E}[|\\\\log S_T|^q]$</annotation>\\n </semantics></math> for some positive <i>q</i>, the arbitrage-free growth in the left wing of the implied volatility smile for <i>T</i> is less constrained than Lee's bound. The result is rationalized by a market trading discretely monitored variance swaps wherein the payoff is a function of squared log-returns, and requires no assumption for the underlying price to admit any negative moment. In this respect, the result can be derived from a model-independent setup. As a byproduct, we relax the moment assumptions on the stock price to provide a new proof of the notorious Gatheral–Fukasawa formula expressing variance swaps in terms of the implied volatility.</p>\",\"PeriodicalId\":49867,\"journal\":{\"name\":\"Mathematical Finance\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mafi.12396\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Finance\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/mafi.12396\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Finance","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/mafi.12396","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 2

摘要

我们重温了罗杰·李15年前证明的基础矩公式。我们证明,在没有套利的情况下,如果在时间T的基础股票价格允许有限的对数矩E[|log ST|q]$\mathbb{E}[|\log S_T|^q]$对于一些正q,T的隐含波动率微笑的左翼中的无套利增长比Lee的界约束更小。该结果通过市场交易离散监测的方差掉期来合理化,其中收益是对数收益的平方函数,并且不需要假设基础价格允许任何负时刻。在这方面,可以从独立于模型的设置中得出结果。作为副产品,我们放松了对股价的即时假设,为臭名昭著的Gatheral–Fukasawa公式提供了新的证据,该公式根据隐含波动率表达方差互换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The log-moment formula for implied volatility

We revisit the foundational Moment Formula proved by Roger Lee fifteen years ago. We show that in the absence of arbitrage, if the underlying stock price at time T admits finite log-moments E [ | log S T | q ] $\mathbb {E}[|\log S_T|^q]$ for some positive q, the arbitrage-free growth in the left wing of the implied volatility smile for T is less constrained than Lee's bound. The result is rationalized by a market trading discretely monitored variance swaps wherein the payoff is a function of squared log-returns, and requires no assumption for the underlying price to admit any negative moment. In this respect, the result can be derived from a model-independent setup. As a byproduct, we relax the moment assumptions on the stock price to provide a new proof of the notorious Gatheral–Fukasawa formula expressing variance swaps in terms of the implied volatility.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Finance
Mathematical Finance 数学-数学跨学科应用
CiteScore
4.10
自引率
6.20%
发文量
27
审稿时长
>12 weeks
期刊介绍: Mathematical Finance seeks to publish original research articles focused on the development and application of novel mathematical and statistical methods for the analysis of financial problems. The journal welcomes contributions on new statistical methods for the analysis of financial problems. Empirical results will be appropriate to the extent that they illustrate a statistical technique, validate a model or provide insight into a financial problem. Papers whose main contribution rests on empirical results derived with standard approaches will not be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信