关于强次边值格的多样性

Pub Date : 2023-07-11 DOI:10.1002/malq.202200067
Sergio Celani, Hernán J. San Martín
{"title":"关于强次边值格的多样性","authors":"Sergio Celani,&nbsp;Hernán J. San Martín","doi":"10.1002/malq.202200067","DOIUrl":null,"url":null,"abstract":"<p>A subresiduated lattice is a pair <math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>A</mi>\n <mo>,</mo>\n <mi>D</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(A,D)$</annotation>\n </semantics></math>, where <i>A</i> is a bounded distributive lattice, <i>D</i> is a bounded sublattice of <i>A</i> and for every <math>\n <semantics>\n <mrow>\n <mi>a</mi>\n <mo>,</mo>\n <mi>b</mi>\n <mo>∈</mo>\n <mi>A</mi>\n </mrow>\n <annotation>$a,b\\in A$</annotation>\n </semantics></math> there exists the maximum of the set <math>\n <semantics>\n <mrow>\n <mo>{</mo>\n <mi>d</mi>\n <mo>∈</mo>\n <mi>D</mi>\n <mo>:</mo>\n <mi>a</mi>\n <mo>∧</mo>\n <mi>d</mi>\n <mo>≤</mo>\n <mi>b</mi>\n <mo>}</mo>\n </mrow>\n <annotation>$\\lbrace d\\in D:a\\wedge d\\le b\\rbrace$</annotation>\n </semantics></math>, which is denoted by <math>\n <semantics>\n <mrow>\n <mi>a</mi>\n <mo>→</mo>\n <mi>b</mi>\n </mrow>\n <annotation>$a\\rightarrow b$</annotation>\n </semantics></math>. This pair can be regarded as an algebra <math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>A</mi>\n <mo>,</mo>\n <mo>∧</mo>\n <mo>,</mo>\n <mo>∨</mo>\n <mo>,</mo>\n <mo>→</mo>\n <mo>,</mo>\n <mn>0</mn>\n <mo>,</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$(A,\\wedge ,\\vee ,\\rightarrow ,0,1)$</annotation>\n </semantics></math> of type (2, 2, 2, 0, 0), where <math>\n <semantics>\n <mrow>\n <mi>D</mi>\n <mo>=</mo>\n <mo>{</mo>\n <mi>a</mi>\n <mo>∈</mo>\n <mi>A</mi>\n <mo>:</mo>\n <mn>1</mn>\n <mo>→</mo>\n <mi>a</mi>\n <mo>=</mo>\n <mi>a</mi>\n <mo>}</mo>\n </mrow>\n <annotation>$D=\\lbrace a\\in A: 1\\rightarrow a =a\\rbrace$</annotation>\n </semantics></math>. The class of subresiduated lattices is a variety which properly contains the variety of Heyting algebras. In this paper we study the subvariety of subresiduated lattices, denoted by <math>\n <semantics>\n <msup>\n <mi>S</mi>\n <mo>□</mo>\n </msup>\n <annotation>$\\mathrm{S}^{\\Box }$</annotation>\n </semantics></math>, whose members satisfy the equation <math>\n <semantics>\n <mrow>\n <mn>1</mn>\n <mo>→</mo>\n <mo>(</mo>\n <mi>a</mi>\n <mo>∨</mo>\n <mi>b</mi>\n <mo>)</mo>\n <mo>=</mo>\n <mo>(</mo>\n <mn>1</mn>\n <mo>→</mo>\n <mi>a</mi>\n <mo>)</mo>\n <mo>∨</mo>\n <mo>(</mo>\n <mn>1</mn>\n <mo>→</mo>\n <mi>b</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$1\\rightarrow (a\\vee b) = (1\\rightarrow a) \\vee (1\\rightarrow b)$</annotation>\n </semantics></math>. Inspired by the fact that in any subresiduated lattice whose order is total the previous equation and the condition <math>\n <semantics>\n <mrow>\n <mi>a</mi>\n <mo>→</mo>\n <mi>b</mi>\n <mo>∈</mo>\n <mo>{</mo>\n <mn>1</mn>\n <mo>→</mo>\n <mi>b</mi>\n <mo>,</mo>\n <mn>1</mn>\n <mo>}</mo>\n </mrow>\n <annotation>$a\\rightarrow b \\in \\lbrace 1\\rightarrow b,1\\rbrace$</annotation>\n </semantics></math> for every <math>\n <semantics>\n <mrow>\n <mi>a</mi>\n <mo>,</mo>\n <mi>b</mi>\n </mrow>\n <annotation>$a,b$</annotation>\n </semantics></math> are satisfied, we also study the subvariety of <math>\n <semantics>\n <msup>\n <mi>S</mi>\n <mo>□</mo>\n </msup>\n <annotation>$\\mathrm{S}^{\\Box }$</annotation>\n </semantics></math> generated by the class whose members satisfy that <math>\n <semantics>\n <mrow>\n <mi>a</mi>\n <mo>→</mo>\n <mi>b</mi>\n <mo>∈</mo>\n <mo>{</mo>\n <mn>1</mn>\n <mo>→</mo>\n <mi>b</mi>\n <mo>,</mo>\n <mn>1</mn>\n <mo>}</mo>\n </mrow>\n <annotation>$a\\rightarrow b \\in \\lbrace 1\\rightarrow b,1\\rbrace$</annotation>\n </semantics></math> for every <math>\n <semantics>\n <mrow>\n <mi>a</mi>\n <mo>,</mo>\n <mi>b</mi>\n </mrow>\n <annotation>$a,b$</annotation>\n </semantics></math>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the variety of strong subresiduated lattices\",\"authors\":\"Sergio Celani,&nbsp;Hernán J. San Martín\",\"doi\":\"10.1002/malq.202200067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A subresiduated lattice is a pair <math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>A</mi>\\n <mo>,</mo>\\n <mi>D</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(A,D)$</annotation>\\n </semantics></math>, where <i>A</i> is a bounded distributive lattice, <i>D</i> is a bounded sublattice of <i>A</i> and for every <math>\\n <semantics>\\n <mrow>\\n <mi>a</mi>\\n <mo>,</mo>\\n <mi>b</mi>\\n <mo>∈</mo>\\n <mi>A</mi>\\n </mrow>\\n <annotation>$a,b\\\\in A$</annotation>\\n </semantics></math> there exists the maximum of the set <math>\\n <semantics>\\n <mrow>\\n <mo>{</mo>\\n <mi>d</mi>\\n <mo>∈</mo>\\n <mi>D</mi>\\n <mo>:</mo>\\n <mi>a</mi>\\n <mo>∧</mo>\\n <mi>d</mi>\\n <mo>≤</mo>\\n <mi>b</mi>\\n <mo>}</mo>\\n </mrow>\\n <annotation>$\\\\lbrace d\\\\in D:a\\\\wedge d\\\\le b\\\\rbrace$</annotation>\\n </semantics></math>, which is denoted by <math>\\n <semantics>\\n <mrow>\\n <mi>a</mi>\\n <mo>→</mo>\\n <mi>b</mi>\\n </mrow>\\n <annotation>$a\\\\rightarrow b$</annotation>\\n </semantics></math>. This pair can be regarded as an algebra <math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>A</mi>\\n <mo>,</mo>\\n <mo>∧</mo>\\n <mo>,</mo>\\n <mo>∨</mo>\\n <mo>,</mo>\\n <mo>→</mo>\\n <mo>,</mo>\\n <mn>0</mn>\\n <mo>,</mo>\\n <mn>1</mn>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(A,\\\\wedge ,\\\\vee ,\\\\rightarrow ,0,1)$</annotation>\\n </semantics></math> of type (2, 2, 2, 0, 0), where <math>\\n <semantics>\\n <mrow>\\n <mi>D</mi>\\n <mo>=</mo>\\n <mo>{</mo>\\n <mi>a</mi>\\n <mo>∈</mo>\\n <mi>A</mi>\\n <mo>:</mo>\\n <mn>1</mn>\\n <mo>→</mo>\\n <mi>a</mi>\\n <mo>=</mo>\\n <mi>a</mi>\\n <mo>}</mo>\\n </mrow>\\n <annotation>$D=\\\\lbrace a\\\\in A: 1\\\\rightarrow a =a\\\\rbrace$</annotation>\\n </semantics></math>. The class of subresiduated lattices is a variety which properly contains the variety of Heyting algebras. In this paper we study the subvariety of subresiduated lattices, denoted by <math>\\n <semantics>\\n <msup>\\n <mi>S</mi>\\n <mo>□</mo>\\n </msup>\\n <annotation>$\\\\mathrm{S}^{\\\\Box }$</annotation>\\n </semantics></math>, whose members satisfy the equation <math>\\n <semantics>\\n <mrow>\\n <mn>1</mn>\\n <mo>→</mo>\\n <mo>(</mo>\\n <mi>a</mi>\\n <mo>∨</mo>\\n <mi>b</mi>\\n <mo>)</mo>\\n <mo>=</mo>\\n <mo>(</mo>\\n <mn>1</mn>\\n <mo>→</mo>\\n <mi>a</mi>\\n <mo>)</mo>\\n <mo>∨</mo>\\n <mo>(</mo>\\n <mn>1</mn>\\n <mo>→</mo>\\n <mi>b</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$1\\\\rightarrow (a\\\\vee b) = (1\\\\rightarrow a) \\\\vee (1\\\\rightarrow b)$</annotation>\\n </semantics></math>. Inspired by the fact that in any subresiduated lattice whose order is total the previous equation and the condition <math>\\n <semantics>\\n <mrow>\\n <mi>a</mi>\\n <mo>→</mo>\\n <mi>b</mi>\\n <mo>∈</mo>\\n <mo>{</mo>\\n <mn>1</mn>\\n <mo>→</mo>\\n <mi>b</mi>\\n <mo>,</mo>\\n <mn>1</mn>\\n <mo>}</mo>\\n </mrow>\\n <annotation>$a\\\\rightarrow b \\\\in \\\\lbrace 1\\\\rightarrow b,1\\\\rbrace$</annotation>\\n </semantics></math> for every <math>\\n <semantics>\\n <mrow>\\n <mi>a</mi>\\n <mo>,</mo>\\n <mi>b</mi>\\n </mrow>\\n <annotation>$a,b$</annotation>\\n </semantics></math> are satisfied, we also study the subvariety of <math>\\n <semantics>\\n <msup>\\n <mi>S</mi>\\n <mo>□</mo>\\n </msup>\\n <annotation>$\\\\mathrm{S}^{\\\\Box }$</annotation>\\n </semantics></math> generated by the class whose members satisfy that <math>\\n <semantics>\\n <mrow>\\n <mi>a</mi>\\n <mo>→</mo>\\n <mi>b</mi>\\n <mo>∈</mo>\\n <mo>{</mo>\\n <mn>1</mn>\\n <mo>→</mo>\\n <mi>b</mi>\\n <mo>,</mo>\\n <mn>1</mn>\\n <mo>}</mo>\\n </mrow>\\n <annotation>$a\\\\rightarrow b \\\\in \\\\lbrace 1\\\\rightarrow b,1\\\\rbrace$</annotation>\\n </semantics></math> for every <math>\\n <semantics>\\n <mrow>\\n <mi>a</mi>\\n <mo>,</mo>\\n <mi>b</mi>\\n </mrow>\\n <annotation>$a,b$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/malq.202200067\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202200067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

子边值格是一对(A,D)$(A,D)$,其中A是有界分配格,D是A的有界子格,并且对于每个A,b∈A$A,b\在A$中存在集合{d∈d:A∧d≤b}$\l轨道d\在d:A楔d\le b\l轨道$中的最大值,其由→ b$a\右箭头b$。这对可以看作是一个代数(A,∧,→ , 0,1)$(A,\wedge,\vee,\rightarrow,0,1)$的类型(2,2,0,0),其中D={A∈A:1→ a=a}$D=\l在a:1\rightarrowa=a\rbrace$中竞速a\。次边值格类是一个适当包含Heyting代数的变种的变种。在本文中,我们研究了由S表示的次边值格的子变种□ $\mathrm{S}^{\Box}$,其成员满足等式1→ (a∧b)=(1→ a)∧(1→ b)$1\rightarrow(a\vee b)=(1\rightarrowa)\vee(1\rigightarrowb)$。受以下事实的启发:在阶为全的任何次边值格中,前面的方程和条件a→ b∈{1→ b,1}$a\rightarrow b\in\lblase 1\rightarrowb,1\rbrace$对于每个a,b$a,b$都满足,我们还研究了S的亚变种□ $\mathrm{S}^{\Box}$由其成员满足→ b∈{1→ b,1}$a\rightarrowb\in\lblase 1\rightarrow b,1\rbrace$对于每个a,b$a,b$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the variety of strong subresiduated lattices

A subresiduated lattice is a pair ( A , D ) $(A,D)$ , where A is a bounded distributive lattice, D is a bounded sublattice of A and for every a , b A $a,b\in A$ there exists the maximum of the set { d D : a d b } $\lbrace d\in D:a\wedge d\le b\rbrace$ , which is denoted by a b $a\rightarrow b$ . This pair can be regarded as an algebra ( A , , , , 0 , 1 ) $(A,\wedge ,\vee ,\rightarrow ,0,1)$ of type (2, 2, 2, 0, 0), where D = { a A : 1 a = a } $D=\lbrace a\in A: 1\rightarrow a =a\rbrace$ . The class of subresiduated lattices is a variety which properly contains the variety of Heyting algebras. In this paper we study the subvariety of subresiduated lattices, denoted by S $\mathrm{S}^{\Box }$ , whose members satisfy the equation  1 ( a b ) = ( 1 a ) ( 1 b ) $1\rightarrow (a\vee b) = (1\rightarrow a) \vee (1\rightarrow b)$ . Inspired by the fact that in any subresiduated lattice whose order is total the previous equation and the condition a b { 1 b , 1 } $a\rightarrow b \in \lbrace 1\rightarrow b,1\rbrace$ for every a , b $a,b$ are satisfied, we also study the subvariety of S $\mathrm{S}^{\Box }$ generated by the class whose members satisfy that a b { 1 b , 1 } $a\rightarrow b \in \lbrace 1\rightarrow b,1\rbrace$ for every a , b $a,b$ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信