关于强次边值格的多样性

IF 0.4 4区 数学 Q4 LOGIC
Sergio Celani, Hernán J. San Martín
{"title":"关于强次边值格的多样性","authors":"Sergio Celani,&nbsp;Hernán J. San Martín","doi":"10.1002/malq.202200067","DOIUrl":null,"url":null,"abstract":"<p>A subresiduated lattice is a pair <math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>A</mi>\n <mo>,</mo>\n <mi>D</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(A,D)$</annotation>\n </semantics></math>, where <i>A</i> is a bounded distributive lattice, <i>D</i> is a bounded sublattice of <i>A</i> and for every <math>\n <semantics>\n <mrow>\n <mi>a</mi>\n <mo>,</mo>\n <mi>b</mi>\n <mo>∈</mo>\n <mi>A</mi>\n </mrow>\n <annotation>$a,b\\in A$</annotation>\n </semantics></math> there exists the maximum of the set <math>\n <semantics>\n <mrow>\n <mo>{</mo>\n <mi>d</mi>\n <mo>∈</mo>\n <mi>D</mi>\n <mo>:</mo>\n <mi>a</mi>\n <mo>∧</mo>\n <mi>d</mi>\n <mo>≤</mo>\n <mi>b</mi>\n <mo>}</mo>\n </mrow>\n <annotation>$\\lbrace d\\in D:a\\wedge d\\le b\\rbrace$</annotation>\n </semantics></math>, which is denoted by <math>\n <semantics>\n <mrow>\n <mi>a</mi>\n <mo>→</mo>\n <mi>b</mi>\n </mrow>\n <annotation>$a\\rightarrow b$</annotation>\n </semantics></math>. This pair can be regarded as an algebra <math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>A</mi>\n <mo>,</mo>\n <mo>∧</mo>\n <mo>,</mo>\n <mo>∨</mo>\n <mo>,</mo>\n <mo>→</mo>\n <mo>,</mo>\n <mn>0</mn>\n <mo>,</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$(A,\\wedge ,\\vee ,\\rightarrow ,0,1)$</annotation>\n </semantics></math> of type (2, 2, 2, 0, 0), where <math>\n <semantics>\n <mrow>\n <mi>D</mi>\n <mo>=</mo>\n <mo>{</mo>\n <mi>a</mi>\n <mo>∈</mo>\n <mi>A</mi>\n <mo>:</mo>\n <mn>1</mn>\n <mo>→</mo>\n <mi>a</mi>\n <mo>=</mo>\n <mi>a</mi>\n <mo>}</mo>\n </mrow>\n <annotation>$D=\\lbrace a\\in A: 1\\rightarrow a =a\\rbrace$</annotation>\n </semantics></math>. The class of subresiduated lattices is a variety which properly contains the variety of Heyting algebras. In this paper we study the subvariety of subresiduated lattices, denoted by <math>\n <semantics>\n <msup>\n <mi>S</mi>\n <mo>□</mo>\n </msup>\n <annotation>$\\mathrm{S}^{\\Box }$</annotation>\n </semantics></math>, whose members satisfy the equation <math>\n <semantics>\n <mrow>\n <mn>1</mn>\n <mo>→</mo>\n <mo>(</mo>\n <mi>a</mi>\n <mo>∨</mo>\n <mi>b</mi>\n <mo>)</mo>\n <mo>=</mo>\n <mo>(</mo>\n <mn>1</mn>\n <mo>→</mo>\n <mi>a</mi>\n <mo>)</mo>\n <mo>∨</mo>\n <mo>(</mo>\n <mn>1</mn>\n <mo>→</mo>\n <mi>b</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$1\\rightarrow (a\\vee b) = (1\\rightarrow a) \\vee (1\\rightarrow b)$</annotation>\n </semantics></math>. Inspired by the fact that in any subresiduated lattice whose order is total the previous equation and the condition <math>\n <semantics>\n <mrow>\n <mi>a</mi>\n <mo>→</mo>\n <mi>b</mi>\n <mo>∈</mo>\n <mo>{</mo>\n <mn>1</mn>\n <mo>→</mo>\n <mi>b</mi>\n <mo>,</mo>\n <mn>1</mn>\n <mo>}</mo>\n </mrow>\n <annotation>$a\\rightarrow b \\in \\lbrace 1\\rightarrow b,1\\rbrace$</annotation>\n </semantics></math> for every <math>\n <semantics>\n <mrow>\n <mi>a</mi>\n <mo>,</mo>\n <mi>b</mi>\n </mrow>\n <annotation>$a,b$</annotation>\n </semantics></math> are satisfied, we also study the subvariety of <math>\n <semantics>\n <msup>\n <mi>S</mi>\n <mo>□</mo>\n </msup>\n <annotation>$\\mathrm{S}^{\\Box }$</annotation>\n </semantics></math> generated by the class whose members satisfy that <math>\n <semantics>\n <mrow>\n <mi>a</mi>\n <mo>→</mo>\n <mi>b</mi>\n <mo>∈</mo>\n <mo>{</mo>\n <mn>1</mn>\n <mo>→</mo>\n <mi>b</mi>\n <mo>,</mo>\n <mn>1</mn>\n <mo>}</mo>\n </mrow>\n <annotation>$a\\rightarrow b \\in \\lbrace 1\\rightarrow b,1\\rbrace$</annotation>\n </semantics></math> for every <math>\n <semantics>\n <mrow>\n <mi>a</mi>\n <mo>,</mo>\n <mi>b</mi>\n </mrow>\n <annotation>$a,b$</annotation>\n </semantics></math>.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the variety of strong subresiduated lattices\",\"authors\":\"Sergio Celani,&nbsp;Hernán J. San Martín\",\"doi\":\"10.1002/malq.202200067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A subresiduated lattice is a pair <math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>A</mi>\\n <mo>,</mo>\\n <mi>D</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(A,D)$</annotation>\\n </semantics></math>, where <i>A</i> is a bounded distributive lattice, <i>D</i> is a bounded sublattice of <i>A</i> and for every <math>\\n <semantics>\\n <mrow>\\n <mi>a</mi>\\n <mo>,</mo>\\n <mi>b</mi>\\n <mo>∈</mo>\\n <mi>A</mi>\\n </mrow>\\n <annotation>$a,b\\\\in A$</annotation>\\n </semantics></math> there exists the maximum of the set <math>\\n <semantics>\\n <mrow>\\n <mo>{</mo>\\n <mi>d</mi>\\n <mo>∈</mo>\\n <mi>D</mi>\\n <mo>:</mo>\\n <mi>a</mi>\\n <mo>∧</mo>\\n <mi>d</mi>\\n <mo>≤</mo>\\n <mi>b</mi>\\n <mo>}</mo>\\n </mrow>\\n <annotation>$\\\\lbrace d\\\\in D:a\\\\wedge d\\\\le b\\\\rbrace$</annotation>\\n </semantics></math>, which is denoted by <math>\\n <semantics>\\n <mrow>\\n <mi>a</mi>\\n <mo>→</mo>\\n <mi>b</mi>\\n </mrow>\\n <annotation>$a\\\\rightarrow b$</annotation>\\n </semantics></math>. This pair can be regarded as an algebra <math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>A</mi>\\n <mo>,</mo>\\n <mo>∧</mo>\\n <mo>,</mo>\\n <mo>∨</mo>\\n <mo>,</mo>\\n <mo>→</mo>\\n <mo>,</mo>\\n <mn>0</mn>\\n <mo>,</mo>\\n <mn>1</mn>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(A,\\\\wedge ,\\\\vee ,\\\\rightarrow ,0,1)$</annotation>\\n </semantics></math> of type (2, 2, 2, 0, 0), where <math>\\n <semantics>\\n <mrow>\\n <mi>D</mi>\\n <mo>=</mo>\\n <mo>{</mo>\\n <mi>a</mi>\\n <mo>∈</mo>\\n <mi>A</mi>\\n <mo>:</mo>\\n <mn>1</mn>\\n <mo>→</mo>\\n <mi>a</mi>\\n <mo>=</mo>\\n <mi>a</mi>\\n <mo>}</mo>\\n </mrow>\\n <annotation>$D=\\\\lbrace a\\\\in A: 1\\\\rightarrow a =a\\\\rbrace$</annotation>\\n </semantics></math>. The class of subresiduated lattices is a variety which properly contains the variety of Heyting algebras. In this paper we study the subvariety of subresiduated lattices, denoted by <math>\\n <semantics>\\n <msup>\\n <mi>S</mi>\\n <mo>□</mo>\\n </msup>\\n <annotation>$\\\\mathrm{S}^{\\\\Box }$</annotation>\\n </semantics></math>, whose members satisfy the equation <math>\\n <semantics>\\n <mrow>\\n <mn>1</mn>\\n <mo>→</mo>\\n <mo>(</mo>\\n <mi>a</mi>\\n <mo>∨</mo>\\n <mi>b</mi>\\n <mo>)</mo>\\n <mo>=</mo>\\n <mo>(</mo>\\n <mn>1</mn>\\n <mo>→</mo>\\n <mi>a</mi>\\n <mo>)</mo>\\n <mo>∨</mo>\\n <mo>(</mo>\\n <mn>1</mn>\\n <mo>→</mo>\\n <mi>b</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$1\\\\rightarrow (a\\\\vee b) = (1\\\\rightarrow a) \\\\vee (1\\\\rightarrow b)$</annotation>\\n </semantics></math>. Inspired by the fact that in any subresiduated lattice whose order is total the previous equation and the condition <math>\\n <semantics>\\n <mrow>\\n <mi>a</mi>\\n <mo>→</mo>\\n <mi>b</mi>\\n <mo>∈</mo>\\n <mo>{</mo>\\n <mn>1</mn>\\n <mo>→</mo>\\n <mi>b</mi>\\n <mo>,</mo>\\n <mn>1</mn>\\n <mo>}</mo>\\n </mrow>\\n <annotation>$a\\\\rightarrow b \\\\in \\\\lbrace 1\\\\rightarrow b,1\\\\rbrace$</annotation>\\n </semantics></math> for every <math>\\n <semantics>\\n <mrow>\\n <mi>a</mi>\\n <mo>,</mo>\\n <mi>b</mi>\\n </mrow>\\n <annotation>$a,b$</annotation>\\n </semantics></math> are satisfied, we also study the subvariety of <math>\\n <semantics>\\n <msup>\\n <mi>S</mi>\\n <mo>□</mo>\\n </msup>\\n <annotation>$\\\\mathrm{S}^{\\\\Box }$</annotation>\\n </semantics></math> generated by the class whose members satisfy that <math>\\n <semantics>\\n <mrow>\\n <mi>a</mi>\\n <mo>→</mo>\\n <mi>b</mi>\\n <mo>∈</mo>\\n <mo>{</mo>\\n <mn>1</mn>\\n <mo>→</mo>\\n <mi>b</mi>\\n <mo>,</mo>\\n <mn>1</mn>\\n <mo>}</mo>\\n </mrow>\\n <annotation>$a\\\\rightarrow b \\\\in \\\\lbrace 1\\\\rightarrow b,1\\\\rbrace$</annotation>\\n </semantics></math> for every <math>\\n <semantics>\\n <mrow>\\n <mi>a</mi>\\n <mo>,</mo>\\n <mi>b</mi>\\n </mrow>\\n <annotation>$a,b$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":49864,\"journal\":{\"name\":\"Mathematical Logic Quarterly\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Logic Quarterly\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/malq.202200067\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Logic Quarterly","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202200067","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

摘要

子边值格是一对(A,D)$(A,D)$,其中A是有界分配格,D是A的有界子格,并且对于每个A,b∈A$A,b\在A$中存在集合{d∈d:A∧d≤b}$\l轨道d\在d:A楔d\le b\l轨道$中的最大值,其由→ b$a\右箭头b$。这对可以看作是一个代数(A,∧,→ , 0,1)$(A,\wedge,\vee,\rightarrow,0,1)$的类型(2,2,0,0),其中D={A∈A:1→ a=a}$D=\l在a:1\rightarrowa=a\rbrace$中竞速a\。次边值格类是一个适当包含Heyting代数的变种的变种。在本文中,我们研究了由S表示的次边值格的子变种□ $\mathrm{S}^{\Box}$,其成员满足等式1→ (a∧b)=(1→ a)∧(1→ b)$1\rightarrow(a\vee b)=(1\rightarrowa)\vee(1\rigightarrowb)$。受以下事实的启发:在阶为全的任何次边值格中,前面的方程和条件a→ b∈{1→ b,1}$a\rightarrow b\in\lblase 1\rightarrowb,1\rbrace$对于每个a,b$a,b$都满足,我们还研究了S的亚变种□ $\mathrm{S}^{\Box}$由其成员满足→ b∈{1→ b,1}$a\rightarrowb\in\lblase 1\rightarrow b,1\rbrace$对于每个a,b$a,b$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the variety of strong subresiduated lattices

A subresiduated lattice is a pair ( A , D ) $(A,D)$ , where A is a bounded distributive lattice, D is a bounded sublattice of A and for every a , b A $a,b\in A$ there exists the maximum of the set { d D : a d b } $\lbrace d\in D:a\wedge d\le b\rbrace$ , which is denoted by a b $a\rightarrow b$ . This pair can be regarded as an algebra ( A , , , , 0 , 1 ) $(A,\wedge ,\vee ,\rightarrow ,0,1)$ of type (2, 2, 2, 0, 0), where D = { a A : 1 a = a } $D=\lbrace a\in A: 1\rightarrow a =a\rbrace$ . The class of subresiduated lattices is a variety which properly contains the variety of Heyting algebras. In this paper we study the subvariety of subresiduated lattices, denoted by S $\mathrm{S}^{\Box }$ , whose members satisfy the equation  1 ( a b ) = ( 1 a ) ( 1 b ) $1\rightarrow (a\vee b) = (1\rightarrow a) \vee (1\rightarrow b)$ . Inspired by the fact that in any subresiduated lattice whose order is total the previous equation and the condition a b { 1 b , 1 } $a\rightarrow b \in \lbrace 1\rightarrow b,1\rbrace$ for every a , b $a,b$ are satisfied, we also study the subvariety of S $\mathrm{S}^{\Box }$ generated by the class whose members satisfy that a b { 1 b , 1 } $a\rightarrow b \in \lbrace 1\rightarrow b,1\rbrace$ for every a , b $a,b$ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
49
审稿时长
>12 weeks
期刊介绍: Mathematical Logic Quarterly publishes original contributions on mathematical logic and foundations of mathematics and related areas, such as general logic, model theory, recursion theory, set theory, proof theory and constructive mathematics, algebraic logic, nonstandard models, and logical aspects of theoretical computer science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信