求助PDF
{"title":"具有多重禁止距离的Rn$\\mathbb{R}^{n}$的色数","authors":"Eric Naslund","doi":"10.1112/mtk.12197","DOIUrl":null,"url":null,"abstract":"<p>Let <math>\n <semantics>\n <mrow>\n <mi>A</mi>\n <mo>⊂</mo>\n <msub>\n <mi>R</mi>\n <mrow>\n <mo>></mo>\n <mn>0</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$A\\subset \\mathbb {R}_{>0}$</annotation>\n </semantics></math> be a finite set of distances, and let <math>\n <semantics>\n <mrow>\n <msub>\n <mi>G</mi>\n <mi>A</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$G_{A}(\\mathbb {R}^{n})$</annotation>\n </semantics></math> be the graph with vertex set <math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n <annotation>$\\mathbb {R}^{n}$</annotation>\n </semantics></math> and edge set <math>\n <semantics>\n <mrow>\n <mo>{</mo>\n <mrow>\n <mo>(</mo>\n <mi>x</mi>\n <mo>,</mo>\n <mi>y</mi>\n <mo>)</mo>\n </mrow>\n <mo>∈</mo>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n <mo>:</mo>\n <mspace></mspace>\n <mo>∥</mo>\n <mi>x</mi>\n <mo>−</mo>\n <mi>y</mi>\n <msub>\n <mo>∥</mo>\n <mn>2</mn>\n </msub>\n <mo>∈</mo>\n <mi>A</mi>\n <mo>}</mo>\n </mrow>\n <annotation>$\\lbrace (x,y)\\in \\mathbb {R}^{n}:\\ \\Vert x-y\\Vert _{2}\\in A\\rbrace$</annotation>\n </semantics></math>, and let <math>\n <semantics>\n <mrow>\n <mi>χ</mi>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n <mo>,</mo>\n <mi>A</mi>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <mi>χ</mi>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>G</mi>\n <mi>A</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\chi (\\mathbb {R}^{n},A)=\\chi (G_{A}(\\mathbb {R}^{n}))$</annotation>\n </semantics></math>. Erdős asked about the growth rate of the <i>m</i>-distance chromatic number\n\n </p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The chromatic number of \\n \\n \\n R\\n n\\n \\n $\\\\mathbb {R}^{n}$\\n with multiple forbidden distances\",\"authors\":\"Eric Naslund\",\"doi\":\"10.1112/mtk.12197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <math>\\n <semantics>\\n <mrow>\\n <mi>A</mi>\\n <mo>⊂</mo>\\n <msub>\\n <mi>R</mi>\\n <mrow>\\n <mo>></mo>\\n <mn>0</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$A\\\\subset \\\\mathbb {R}_{>0}$</annotation>\\n </semantics></math> be a finite set of distances, and let <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>G</mi>\\n <mi>A</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>R</mi>\\n <mi>n</mi>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$G_{A}(\\\\mathbb {R}^{n})$</annotation>\\n </semantics></math> be the graph with vertex set <math>\\n <semantics>\\n <msup>\\n <mi>R</mi>\\n <mi>n</mi>\\n </msup>\\n <annotation>$\\\\mathbb {R}^{n}$</annotation>\\n </semantics></math> and edge set <math>\\n <semantics>\\n <mrow>\\n <mo>{</mo>\\n <mrow>\\n <mo>(</mo>\\n <mi>x</mi>\\n <mo>,</mo>\\n <mi>y</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>∈</mo>\\n <msup>\\n <mi>R</mi>\\n <mi>n</mi>\\n </msup>\\n <mo>:</mo>\\n <mspace></mspace>\\n <mo>∥</mo>\\n <mi>x</mi>\\n <mo>−</mo>\\n <mi>y</mi>\\n <msub>\\n <mo>∥</mo>\\n <mn>2</mn>\\n </msub>\\n <mo>∈</mo>\\n <mi>A</mi>\\n <mo>}</mo>\\n </mrow>\\n <annotation>$\\\\lbrace (x,y)\\\\in \\\\mathbb {R}^{n}:\\\\ \\\\Vert x-y\\\\Vert _{2}\\\\in A\\\\rbrace$</annotation>\\n </semantics></math>, and let <math>\\n <semantics>\\n <mrow>\\n <mi>χ</mi>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>R</mi>\\n <mi>n</mi>\\n </msup>\\n <mo>,</mo>\\n <mi>A</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>=</mo>\\n <mi>χ</mi>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>G</mi>\\n <mi>A</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>R</mi>\\n <mi>n</mi>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\chi (\\\\mathbb {R}^{n},A)=\\\\chi (G_{A}(\\\\mathbb {R}^{n}))$</annotation>\\n </semantics></math>. Erdős asked about the growth rate of the <i>m</i>-distance chromatic number\\n\\n </p>\",\"PeriodicalId\":18463,\"journal\":{\"name\":\"Mathematika\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematika\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/mtk.12197\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematika","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/mtk.12197","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用