{"title":"从智能手机摄像头图像中辨别服装材料","authors":"Ryohei Koike, Keiichi Yamada","doi":"10.1002/ecj.12391","DOIUrl":null,"url":null,"abstract":"<p>Information on fabric material is necessary in washing and ironing clothing. However, indication on a care tag may peel off or the tag may come off due to deterioration over time. Discrimination of the material from the fabric itself is not easy for a general person. Estimating the material of an object is one of the challenging tasks in computer vision. This paper deals with the identification of cloth materials using computer vision. We studied a method to discriminate the fabric material from the image of clothing taken by a smartphone camera. First, we investigated the relationship between image resolution and discrimination accuracy using a convolutional neural network (CNN). As a result, we observed that the accuracy changes with resolution and that the resolution at which the accuracy is highest differs depending on the material. Based on these results, we proposed a fabric material discrimination method using multi-resolution images by combining two CNNs. As a result of the evaluation experiment, the proposed method discriminated six kinds of fabric materials with 87.1% accuracy, and the accuracy was significantly higher than that of the comparison method without using multi-resolution images.</p>","PeriodicalId":50539,"journal":{"name":"Electronics and Communications in Japan","volume":"106 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discrimination of clothing materials from smartphone camera images\",\"authors\":\"Ryohei Koike, Keiichi Yamada\",\"doi\":\"10.1002/ecj.12391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Information on fabric material is necessary in washing and ironing clothing. However, indication on a care tag may peel off or the tag may come off due to deterioration over time. Discrimination of the material from the fabric itself is not easy for a general person. Estimating the material of an object is one of the challenging tasks in computer vision. This paper deals with the identification of cloth materials using computer vision. We studied a method to discriminate the fabric material from the image of clothing taken by a smartphone camera. First, we investigated the relationship between image resolution and discrimination accuracy using a convolutional neural network (CNN). As a result, we observed that the accuracy changes with resolution and that the resolution at which the accuracy is highest differs depending on the material. Based on these results, we proposed a fabric material discrimination method using multi-resolution images by combining two CNNs. As a result of the evaluation experiment, the proposed method discriminated six kinds of fabric materials with 87.1% accuracy, and the accuracy was significantly higher than that of the comparison method without using multi-resolution images.</p>\",\"PeriodicalId\":50539,\"journal\":{\"name\":\"Electronics and Communications in Japan\",\"volume\":\"106 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronics and Communications in Japan\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ecj.12391\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics and Communications in Japan","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecj.12391","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Discrimination of clothing materials from smartphone camera images
Information on fabric material is necessary in washing and ironing clothing. However, indication on a care tag may peel off or the tag may come off due to deterioration over time. Discrimination of the material from the fabric itself is not easy for a general person. Estimating the material of an object is one of the challenging tasks in computer vision. This paper deals with the identification of cloth materials using computer vision. We studied a method to discriminate the fabric material from the image of clothing taken by a smartphone camera. First, we investigated the relationship between image resolution and discrimination accuracy using a convolutional neural network (CNN). As a result, we observed that the accuracy changes with resolution and that the resolution at which the accuracy is highest differs depending on the material. Based on these results, we proposed a fabric material discrimination method using multi-resolution images by combining two CNNs. As a result of the evaluation experiment, the proposed method discriminated six kinds of fabric materials with 87.1% accuracy, and the accuracy was significantly higher than that of the comparison method without using multi-resolution images.
期刊介绍:
Electronics and Communications in Japan (ECJ) publishes papers translated from the Transactions of the Institute of Electrical Engineers of Japan 12 times per year as an official journal of the Institute of Electrical Engineers of Japan (IEEJ). ECJ aims to provide world-class researches in highly diverse and sophisticated areas of Electrical and Electronic Engineering as well as in related disciplines with emphasis on electronic circuits, controls and communications. ECJ focuses on the following fields:
- Electronic theory and circuits,
- Control theory,
- Communications,
- Cryptography,
- Biomedical fields,
- Surveillance,
- Robotics,
- Sensors and actuators,
- Micromachines,
- Image analysis and signal analysis,
- New materials.
For works related to the science, technology, and applications of electric power, please refer to the sister journal Electrical Engineering in Japan (EEJ).