{"title":"铂缓冲层对柔性铁电外延薄膜制备工艺的影响","authors":"Tomofumi Mizuyama, Hiroaki Nishikawa","doi":"10.1002/ecj.12386","DOIUrl":null,"url":null,"abstract":"<p>Epitaxial thin films of a ferroelectric perovskite-type oxide grown on single-crystalline SrTiO<sub>3</sub> (100) were transferred onto a flexible printed circuit (FPC). In the case that the thin films were directly adhered onto FPC using a copper foil double-coated conductive adhesive tape (Cu double-sided tape), serious cracking and exfoliation occurred during the transfer process. To avoid these damages, we have tried to insert a metal buffer layer with excellent ductility between the ferroelectric oxide thin film and the Cu double-sided tape. The platinum buffer layer was found to be appropriate to establish a crack- and exfoliation-free transfer process.</p>","PeriodicalId":50539,"journal":{"name":"Electronics and Communications in Japan","volume":"106 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of platinum buffer layer on the fabrication process of flexible ferroelectric epitaxial thin films\",\"authors\":\"Tomofumi Mizuyama, Hiroaki Nishikawa\",\"doi\":\"10.1002/ecj.12386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Epitaxial thin films of a ferroelectric perovskite-type oxide grown on single-crystalline SrTiO<sub>3</sub> (100) were transferred onto a flexible printed circuit (FPC). In the case that the thin films were directly adhered onto FPC using a copper foil double-coated conductive adhesive tape (Cu double-sided tape), serious cracking and exfoliation occurred during the transfer process. To avoid these damages, we have tried to insert a metal buffer layer with excellent ductility between the ferroelectric oxide thin film and the Cu double-sided tape. The platinum buffer layer was found to be appropriate to establish a crack- and exfoliation-free transfer process.</p>\",\"PeriodicalId\":50539,\"journal\":{\"name\":\"Electronics and Communications in Japan\",\"volume\":\"106 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronics and Communications in Japan\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ecj.12386\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics and Communications in Japan","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecj.12386","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Effect of platinum buffer layer on the fabrication process of flexible ferroelectric epitaxial thin films
Epitaxial thin films of a ferroelectric perovskite-type oxide grown on single-crystalline SrTiO3 (100) were transferred onto a flexible printed circuit (FPC). In the case that the thin films were directly adhered onto FPC using a copper foil double-coated conductive adhesive tape (Cu double-sided tape), serious cracking and exfoliation occurred during the transfer process. To avoid these damages, we have tried to insert a metal buffer layer with excellent ductility between the ferroelectric oxide thin film and the Cu double-sided tape. The platinum buffer layer was found to be appropriate to establish a crack- and exfoliation-free transfer process.
期刊介绍:
Electronics and Communications in Japan (ECJ) publishes papers translated from the Transactions of the Institute of Electrical Engineers of Japan 12 times per year as an official journal of the Institute of Electrical Engineers of Japan (IEEJ). ECJ aims to provide world-class researches in highly diverse and sophisticated areas of Electrical and Electronic Engineering as well as in related disciplines with emphasis on electronic circuits, controls and communications. ECJ focuses on the following fields:
- Electronic theory and circuits,
- Control theory,
- Communications,
- Cryptography,
- Biomedical fields,
- Surveillance,
- Robotics,
- Sensors and actuators,
- Micromachines,
- Image analysis and signal analysis,
- New materials.
For works related to the science, technology, and applications of electric power, please refer to the sister journal Electrical Engineering in Japan (EEJ).