{"title":"卷柏科细胞器基因组中广泛的RNA编辑、GC偏向突变和PPR家族扩增之间的相关进化","authors":"Jong-Soo Kang, Jigao Yu, Xian-Chun Zhang, Qiao-Ping Xiang","doi":"10.1111/jse.12927","DOIUrl":null,"url":null,"abstract":"<p>Extensive C-to-U editing has been reported from plastid genomes (plastomes) and mitochondrial genomes (mitogenomes) of spikemoss. While “reverse” U-to-C editing was recorded in other seed-free plants such as hornworts, quillworts, and ferns, it was not observed in spikemosses. However, no comprehensive study on the association between RNA editing and other genomic features was conducted for the organelle genomes of spikemosses. Here, we report thousands of C-to-U editing sites from plastomes and mitogenomes of two species: 1767 and 2394 edits in <i>Selaginella remotifolia</i>, and 4091 and 2786 edits in <i>Selaginella nipponica</i>, respectively. Comparative analyses revealed two different editing frequencies among plastomes, but one similar frequency in mitogenomes. The different editing frequency in the <i>Selaginella</i> organelle genomes is related to the nonsynonymous substitution rate and the genome structural complexity. The high guanine and cytosine (GC) content caused by GC-biased mutations in organelle genomes might be related to the absence of U-to-C editing in Selaginellaceae. Using RNA-seq and whole-genome data, we screened the pentatricopeptide repeat (PPR) family and discovered that the number of aspartic acid–tyrosine–tryptophan (DYW) domain-containing PPR proteins corresponded roughly to the editing abundance in the <i>Selaginella</i> organelle genomes. Consequently, we hypothesize that associated evolution among RNA editing, GC-biased mutation in organelle genomes, and the PPR protein family encoded in the nuclear genome, is probably triggered by the aberrant DNA repair system in Selaginellaceae. Our study provides new insights into the association between organelle and nuclear genomes in Selaginellaceae, which would contribute to understanding the evolution of post-transcriptional modifications of organelle genomes in land plants.</p>","PeriodicalId":17087,"journal":{"name":"Journal of Systematics and Evolution","volume":"61 5","pages":"890-905"},"PeriodicalIF":3.7000,"publicationDate":"2022-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The associated evolution among the extensive RNA editing, GC-biased mutation, and PPR family expansion in the organelle genomes of Selaginellaceae\",\"authors\":\"Jong-Soo Kang, Jigao Yu, Xian-Chun Zhang, Qiao-Ping Xiang\",\"doi\":\"10.1111/jse.12927\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Extensive C-to-U editing has been reported from plastid genomes (plastomes) and mitochondrial genomes (mitogenomes) of spikemoss. While “reverse” U-to-C editing was recorded in other seed-free plants such as hornworts, quillworts, and ferns, it was not observed in spikemosses. However, no comprehensive study on the association between RNA editing and other genomic features was conducted for the organelle genomes of spikemosses. Here, we report thousands of C-to-U editing sites from plastomes and mitogenomes of two species: 1767 and 2394 edits in <i>Selaginella remotifolia</i>, and 4091 and 2786 edits in <i>Selaginella nipponica</i>, respectively. Comparative analyses revealed two different editing frequencies among plastomes, but one similar frequency in mitogenomes. The different editing frequency in the <i>Selaginella</i> organelle genomes is related to the nonsynonymous substitution rate and the genome structural complexity. The high guanine and cytosine (GC) content caused by GC-biased mutations in organelle genomes might be related to the absence of U-to-C editing in Selaginellaceae. Using RNA-seq and whole-genome data, we screened the pentatricopeptide repeat (PPR) family and discovered that the number of aspartic acid–tyrosine–tryptophan (DYW) domain-containing PPR proteins corresponded roughly to the editing abundance in the <i>Selaginella</i> organelle genomes. Consequently, we hypothesize that associated evolution among RNA editing, GC-biased mutation in organelle genomes, and the PPR protein family encoded in the nuclear genome, is probably triggered by the aberrant DNA repair system in Selaginellaceae. Our study provides new insights into the association between organelle and nuclear genomes in Selaginellaceae, which would contribute to understanding the evolution of post-transcriptional modifications of organelle genomes in land plants.</p>\",\"PeriodicalId\":17087,\"journal\":{\"name\":\"Journal of Systematics and Evolution\",\"volume\":\"61 5\",\"pages\":\"890-905\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2022-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Systematics and Evolution\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jse.12927\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systematics and Evolution","FirstCategoryId":"1089","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jse.12927","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
The associated evolution among the extensive RNA editing, GC-biased mutation, and PPR family expansion in the organelle genomes of Selaginellaceae
Extensive C-to-U editing has been reported from plastid genomes (plastomes) and mitochondrial genomes (mitogenomes) of spikemoss. While “reverse” U-to-C editing was recorded in other seed-free plants such as hornworts, quillworts, and ferns, it was not observed in spikemosses. However, no comprehensive study on the association between RNA editing and other genomic features was conducted for the organelle genomes of spikemosses. Here, we report thousands of C-to-U editing sites from plastomes and mitogenomes of two species: 1767 and 2394 edits in Selaginella remotifolia, and 4091 and 2786 edits in Selaginella nipponica, respectively. Comparative analyses revealed two different editing frequencies among plastomes, but one similar frequency in mitogenomes. The different editing frequency in the Selaginella organelle genomes is related to the nonsynonymous substitution rate and the genome structural complexity. The high guanine and cytosine (GC) content caused by GC-biased mutations in organelle genomes might be related to the absence of U-to-C editing in Selaginellaceae. Using RNA-seq and whole-genome data, we screened the pentatricopeptide repeat (PPR) family and discovered that the number of aspartic acid–tyrosine–tryptophan (DYW) domain-containing PPR proteins corresponded roughly to the editing abundance in the Selaginella organelle genomes. Consequently, we hypothesize that associated evolution among RNA editing, GC-biased mutation in organelle genomes, and the PPR protein family encoded in the nuclear genome, is probably triggered by the aberrant DNA repair system in Selaginellaceae. Our study provides new insights into the association between organelle and nuclear genomes in Selaginellaceae, which would contribute to understanding the evolution of post-transcriptional modifications of organelle genomes in land plants.
期刊介绍:
Journal of Systematics and Evolution (JSE, since 2008; formerly Acta Phytotaxonomica Sinica) is a plant-based international journal newly dedicated to the description and understanding of the biological diversity. It covers: description of new taxa, monographic revision, phylogenetics, molecular evolution and genome evolution, evolutionary developmental biology, evolutionary ecology, population biology, conservation biology, biogeography, paleobiology, evolutionary theories, and related subjects.