通过流形进行月球弹道捕获的快速可达性评估:高斯过程回归应用

IF 2.7 1区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Sandeep K. Singh, John L. Junkins, Manoranjan Majji, Ehsan Taheri
{"title":"通过流形进行月球弹道捕获的快速可达性评估:高斯过程回归应用","authors":"Sandeep K. Singh,&nbsp;John L. Junkins,&nbsp;Manoranjan Majji,&nbsp;Ehsan Taheri","doi":"10.1007/s42064-021-0130-0","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, a supervised machine learning approach called Gaussian process regression (GPR) was applied to approximate optimal bi-impulse rendezvous maneuvers in the cis-lunar space. We demonstrate the use of the GPR approximation of the optimal bi-impulse transfer to patch points associated with various invariant manifolds in the cis-lunar space. The proposed method advances preliminary mission design operations by avoiding the computational costs associated with repeated solutions of the optimal bi-impulsive Lambert transfer because the learned map is computationally efficient. This approach promises to be useful for aiding in preliminary mission design. The use of invariant manifolds as part of the transfer trajectory design offers unique features for reducing propellant consumption while facilitating the solution of trajectory optimization problems. Long ballistic capture coasts are also very attractive for mission guidance, navigation, and control robustness. A multi-input single-output GPR model is presented to represent the fuel costs (in terms of the Δ<i>V</i> magnitude) associated with the class of orbital transfers of interest efficiently. The developed model is also proven to provide efficient approximations. The multi-resolution use of local GPRs over smaller sub-domains and their use for constructing a global GPR model are also demonstrated. One of the unique features of GPRs is that they provide an estimate of the quality of approximations in the form of covariance, which is proven to provide statistical consistency with the optimal trajectories generated through the approximation process. The numerical results demonstrate our basis for optimism for the utility of the proposed method.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":52291,"journal":{"name":"Astrodynamics","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2022-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Rapid accessibility evaluation for ballistic lunar capture via manifolds: A Gaussian process regression application\",\"authors\":\"Sandeep K. Singh,&nbsp;John L. Junkins,&nbsp;Manoranjan Majji,&nbsp;Ehsan Taheri\",\"doi\":\"10.1007/s42064-021-0130-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, a supervised machine learning approach called Gaussian process regression (GPR) was applied to approximate optimal bi-impulse rendezvous maneuvers in the cis-lunar space. We demonstrate the use of the GPR approximation of the optimal bi-impulse transfer to patch points associated with various invariant manifolds in the cis-lunar space. The proposed method advances preliminary mission design operations by avoiding the computational costs associated with repeated solutions of the optimal bi-impulsive Lambert transfer because the learned map is computationally efficient. This approach promises to be useful for aiding in preliminary mission design. The use of invariant manifolds as part of the transfer trajectory design offers unique features for reducing propellant consumption while facilitating the solution of trajectory optimization problems. Long ballistic capture coasts are also very attractive for mission guidance, navigation, and control robustness. A multi-input single-output GPR model is presented to represent the fuel costs (in terms of the Δ<i>V</i> magnitude) associated with the class of orbital transfers of interest efficiently. The developed model is also proven to provide efficient approximations. The multi-resolution use of local GPRs over smaller sub-domains and their use for constructing a global GPR model are also demonstrated. One of the unique features of GPRs is that they provide an estimate of the quality of approximations in the form of covariance, which is proven to provide statistical consistency with the optimal trajectories generated through the approximation process. The numerical results demonstrate our basis for optimism for the utility of the proposed method.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":52291,\"journal\":{\"name\":\"Astrodynamics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2022-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astrodynamics\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42064-021-0130-0\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrodynamics","FirstCategoryId":"1087","ListUrlMain":"https://link.springer.com/article/10.1007/s42064-021-0130-0","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 1

摘要

在本研究中,将一种称为高斯过程回归(GPR)的监督机器学习方法应用于顺月空间中的近似最优双脉冲交会机动。我们证明了在顺月空间中使用最佳双脉冲转移的GPR近似来修补与各种不变流形相关的点。所提出的方法通过避免与最优双脉冲Lambert转移的重复解相关的计算成本来推进初步任务设计操作,因为所学习的映射在计算上是有效的。这种方法有望有助于初步任务设计。作为转移轨迹设计的一部分,使用不变流形提供了减少推进剂消耗的独特功能,同时有助于解决轨迹优化问题。长弹道捕获海岸对于任务制导、导航和控制的稳健性也非常有吸引力。提出了一个多输入单输出GPR模型,以有效地表示与感兴趣的轨道转移类别相关的燃料成本(根据ΔV大小)。所开发的模型也被证明提供了有效的近似。还演示了局部探地雷达在较小子域上的多分辨率使用及其在构建全局探地雷达模型中的应用。探地雷达的一个独特特征是,它们以协方差的形式提供近似质量的估计,这被证明与通过近似过程生成的最佳轨迹具有统计一致性。数值结果证明了我们对所提出方法的实用性持乐观态度的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rapid accessibility evaluation for ballistic lunar capture via manifolds: A Gaussian process regression application

In this study, a supervised machine learning approach called Gaussian process regression (GPR) was applied to approximate optimal bi-impulse rendezvous maneuvers in the cis-lunar space. We demonstrate the use of the GPR approximation of the optimal bi-impulse transfer to patch points associated with various invariant manifolds in the cis-lunar space. The proposed method advances preliminary mission design operations by avoiding the computational costs associated with repeated solutions of the optimal bi-impulsive Lambert transfer because the learned map is computationally efficient. This approach promises to be useful for aiding in preliminary mission design. The use of invariant manifolds as part of the transfer trajectory design offers unique features for reducing propellant consumption while facilitating the solution of trajectory optimization problems. Long ballistic capture coasts are also very attractive for mission guidance, navigation, and control robustness. A multi-input single-output GPR model is presented to represent the fuel costs (in terms of the ΔV magnitude) associated with the class of orbital transfers of interest efficiently. The developed model is also proven to provide efficient approximations. The multi-resolution use of local GPRs over smaller sub-domains and their use for constructing a global GPR model are also demonstrated. One of the unique features of GPRs is that they provide an estimate of the quality of approximations in the form of covariance, which is proven to provide statistical consistency with the optimal trajectories generated through the approximation process. The numerical results demonstrate our basis for optimism for the utility of the proposed method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Astrodynamics
Astrodynamics Engineering-Aerospace Engineering
CiteScore
6.90
自引率
34.40%
发文量
32
期刊介绍: Astrodynamics is a peer-reviewed international journal that is co-published by Tsinghua University Press and Springer. The high-quality peer-reviewed articles of original research, comprehensive review, mission accomplishments, and technical comments in all fields of astrodynamics will be given priorities for publication. In addition, related research in astronomy and astrophysics that takes advantages of the analytical and computational methods of astrodynamics is also welcome. Astrodynamics would like to invite all of the astrodynamics specialists to submit their research articles to this new journal. Currently, the scope of the journal includes, but is not limited to:Fundamental orbital dynamicsSpacecraft trajectory optimization and space mission designOrbit determination and prediction, autonomous orbital navigationSpacecraft attitude determination, control, and dynamicsGuidance and control of spacecraft and space robotsSpacecraft constellation design and formation flyingModelling, analysis, and optimization of innovative space systemsNovel concepts for space engineering and interdisciplinary applicationsThe effort of the Editorial Board will be ensuring the journal to publish novel researches that advance the field, and will provide authors with a productive, fair, and timely review experience. It is our sincere hope that all researchers in the field of astrodynamics will eagerly access this journal, Astrodynamics, as either authors or readers, making it an illustrious journal that will shape our future space explorations and discoveries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信