具有引力轨道-姿态耦合摄动的小行星的面外平衡点和不变流形

IF 2.7 1区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Yue Wang, Ruikang Zhang
{"title":"具有引力轨道-姿态耦合摄动的小行星的面外平衡点和不变流形","authors":"Yue Wang,&nbsp;Ruikang Zhang","doi":"10.1007/s42064-021-0106-0","DOIUrl":null,"url":null,"abstract":"<div><p>By considering the spacecraft as an extended, rigid body with a prior known attitude instead of a point mass, the <i>attitude-restricted orbital dynamics</i> can improve the precision of the classical point-mass orbital dynamics in close proximity to an asteroid, because it includes the perturbation caused by the gravitational orbit–attitude coupling of the spacecraft (GOACP). The GOACP is defined as the difference between the gravity acting on a non-spherical, extended body (the real case of a spacecraft) and the gravity acting on a point mass (the approximation of a spacecraft in classical orbital dynamics). In-plane equilibrium points that are within the principal planes of the asteroid have been investigated for the attitude-restricted orbital dynamics in previous studies, including equatorial and in-plane non-equatorial equilibrium points. In this study, out-of-plane equilibrium points outside the principal planes of the asteroid were examined. Out-of-plane equilibrium points cannot exist in the classical point-mass orbital dynamics but do exist in the attitude-restricted orbital dynamics owing to the effects of the GOACP. The previously investigated in-plane equilibrium points and the out-of-plane ones examined in this study provide a complete map of the equilibrium points in close proximity to an asteroid with the GOACP. Equatorial and in-plane non-equatorial equilibrium points have extended the longitude and latitude ranges of the classical equilibrium points without the GOACP, respectively, while the out-of-plane ones examined in the present study extend both the longitude and latitude ranges. Additionally, the invariant manifolds of out-of-plane equilibrium points were calculated, and the results indicated that the attitude of spacecraft significantly affects the invariant manifolds. In practice, these equilibrium points can provide natural hovering positions for operations in proximity to asteroids, and their invariant manifolds can be used for transfers to or from the equilibrium points.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":52291,"journal":{"name":"Astrodynamics","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2021-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Out-of-plane equilibrium points and invariant manifolds about an asteroid with gravitational orbit—attitude coupling perturbation\",\"authors\":\"Yue Wang,&nbsp;Ruikang Zhang\",\"doi\":\"10.1007/s42064-021-0106-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>By considering the spacecraft as an extended, rigid body with a prior known attitude instead of a point mass, the <i>attitude-restricted orbital dynamics</i> can improve the precision of the classical point-mass orbital dynamics in close proximity to an asteroid, because it includes the perturbation caused by the gravitational orbit–attitude coupling of the spacecraft (GOACP). The GOACP is defined as the difference between the gravity acting on a non-spherical, extended body (the real case of a spacecraft) and the gravity acting on a point mass (the approximation of a spacecraft in classical orbital dynamics). In-plane equilibrium points that are within the principal planes of the asteroid have been investigated for the attitude-restricted orbital dynamics in previous studies, including equatorial and in-plane non-equatorial equilibrium points. In this study, out-of-plane equilibrium points outside the principal planes of the asteroid were examined. Out-of-plane equilibrium points cannot exist in the classical point-mass orbital dynamics but do exist in the attitude-restricted orbital dynamics owing to the effects of the GOACP. The previously investigated in-plane equilibrium points and the out-of-plane ones examined in this study provide a complete map of the equilibrium points in close proximity to an asteroid with the GOACP. Equatorial and in-plane non-equatorial equilibrium points have extended the longitude and latitude ranges of the classical equilibrium points without the GOACP, respectively, while the out-of-plane ones examined in the present study extend both the longitude and latitude ranges. Additionally, the invariant manifolds of out-of-plane equilibrium points were calculated, and the results indicated that the attitude of spacecraft significantly affects the invariant manifolds. In practice, these equilibrium points can provide natural hovering positions for operations in proximity to asteroids, and their invariant manifolds can be used for transfers to or from the equilibrium points.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":52291,\"journal\":{\"name\":\"Astrodynamics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2021-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astrodynamics\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42064-021-0106-0\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrodynamics","FirstCategoryId":"1087","ListUrlMain":"https://link.springer.com/article/10.1007/s42064-021-0106-0","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

通过将航天器视为具有先前已知姿态而非点质量的扩展刚体,姿态受限轨道动力学可以提高小行星附近经典点质量轨道动力学的精度,因为它包括航天器引力轨道-姿态耦合(GOACP)引起的扰动。GOACP被定义为作用在非球形扩展体上的重力(航天器的真实情况)和作用在点质量上的重力之间的差(经典轨道动力学中航天器的近似值)。在以前的研究中,已经对小行星主平面内的平面内平衡点进行了姿态限制轨道动力学的研究,包括赤道平衡点和平面内非赤道平衡点。在这项研究中,研究了小行星主平面外的平面外平衡点。平面外平衡点不可能存在于经典的点质量轨道动力学中,但由于GOACP的影响,它确实存在于姿态受限的轨道动力学中。先前研究的平面内平衡点和本研究中检查的平面外平衡点提供了一张靠近GOACP小行星的平衡点的完整地图。赤道和平面内非赤道平衡点分别扩展了没有GOACP的经典平衡点的经度和纬度范围,而本研究中检查的平面外平衡点扩展了经度和纬度的范围。此外,还计算了平面外平衡点的不变流形,结果表明,航天器的姿态对不变流形有显著影响。在实践中,这些平衡点可以为小行星附近的操作提供自然的悬停位置,并且它们的不变流形可以用于转移到平衡点或从平衡点转移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Out-of-plane equilibrium points and invariant manifolds about an asteroid with gravitational orbit—attitude coupling perturbation

By considering the spacecraft as an extended, rigid body with a prior known attitude instead of a point mass, the attitude-restricted orbital dynamics can improve the precision of the classical point-mass orbital dynamics in close proximity to an asteroid, because it includes the perturbation caused by the gravitational orbit–attitude coupling of the spacecraft (GOACP). The GOACP is defined as the difference between the gravity acting on a non-spherical, extended body (the real case of a spacecraft) and the gravity acting on a point mass (the approximation of a spacecraft in classical orbital dynamics). In-plane equilibrium points that are within the principal planes of the asteroid have been investigated for the attitude-restricted orbital dynamics in previous studies, including equatorial and in-plane non-equatorial equilibrium points. In this study, out-of-plane equilibrium points outside the principal planes of the asteroid were examined. Out-of-plane equilibrium points cannot exist in the classical point-mass orbital dynamics but do exist in the attitude-restricted orbital dynamics owing to the effects of the GOACP. The previously investigated in-plane equilibrium points and the out-of-plane ones examined in this study provide a complete map of the equilibrium points in close proximity to an asteroid with the GOACP. Equatorial and in-plane non-equatorial equilibrium points have extended the longitude and latitude ranges of the classical equilibrium points without the GOACP, respectively, while the out-of-plane ones examined in the present study extend both the longitude and latitude ranges. Additionally, the invariant manifolds of out-of-plane equilibrium points were calculated, and the results indicated that the attitude of spacecraft significantly affects the invariant manifolds. In practice, these equilibrium points can provide natural hovering positions for operations in proximity to asteroids, and their invariant manifolds can be used for transfers to or from the equilibrium points.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Astrodynamics
Astrodynamics Engineering-Aerospace Engineering
CiteScore
6.90
自引率
34.40%
发文量
32
期刊介绍: Astrodynamics is a peer-reviewed international journal that is co-published by Tsinghua University Press and Springer. The high-quality peer-reviewed articles of original research, comprehensive review, mission accomplishments, and technical comments in all fields of astrodynamics will be given priorities for publication. In addition, related research in astronomy and astrophysics that takes advantages of the analytical and computational methods of astrodynamics is also welcome. Astrodynamics would like to invite all of the astrodynamics specialists to submit their research articles to this new journal. Currently, the scope of the journal includes, but is not limited to:Fundamental orbital dynamicsSpacecraft trajectory optimization and space mission designOrbit determination and prediction, autonomous orbital navigationSpacecraft attitude determination, control, and dynamicsGuidance and control of spacecraft and space robotsSpacecraft constellation design and formation flyingModelling, analysis, and optimization of innovative space systemsNovel concepts for space engineering and interdisciplinary applicationsThe effort of the Editorial Board will be ensuring the journal to publish novel researches that advance the field, and will provide authors with a productive, fair, and timely review experience. It is our sincere hope that all researchers in the field of astrodynamics will eagerly access this journal, Astrodynamics, as either authors or readers, making it an illustrious journal that will shape our future space explorations and discoveries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信