决定性共识聚类

IF 1.4 4区 计算机科学 Q2 STATISTICS & PROBABILITY
Serge Vicente, Alejandro Murua-Sazo
{"title":"决定性共识聚类","authors":"Serge Vicente,&nbsp;Alejandro Murua-Sazo","doi":"10.1007/s11634-022-00514-6","DOIUrl":null,"url":null,"abstract":"<div><p>Random restart of a given algorithm produces many partitions that can be aggregated to yield a consensus clustering. Ensemble methods have been recognized as more robust approaches for data clustering than single clustering algorithms. We propose the use of determinantal point processes or DPPs for the random restart of clustering algorithms based on initial sets of center points, such as <i>k</i>-medoids or <i>k</i>-means. The relation between DPPs and kernel-based methods makes DPPs suitable to describe and quantify similarity between objects. DPPs favor diversity of the center points in initial sets, so that sets with similar points have less chance of being generated than sets with very distinct points. Most current inital sets are generated with center points sampled uniformly at random. We show through extensive simulations that, contrary to DPPs, this technique fails both to ensure diversity, and to obtain a good coverage of all data facets. The latter are two key properties that make DPPs achieve good performance. Simulations with artificial datasets and applications to real datasets show that determinantal consensus clustering outperforms consensus clusterings which are based on uniform random sampling of center points.</p></div>","PeriodicalId":49270,"journal":{"name":"Advances in Data Analysis and Classification","volume":"17 4","pages":"829 - 858"},"PeriodicalIF":1.4000,"publicationDate":"2022-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Determinantal consensus clustering\",\"authors\":\"Serge Vicente,&nbsp;Alejandro Murua-Sazo\",\"doi\":\"10.1007/s11634-022-00514-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Random restart of a given algorithm produces many partitions that can be aggregated to yield a consensus clustering. Ensemble methods have been recognized as more robust approaches for data clustering than single clustering algorithms. We propose the use of determinantal point processes or DPPs for the random restart of clustering algorithms based on initial sets of center points, such as <i>k</i>-medoids or <i>k</i>-means. The relation between DPPs and kernel-based methods makes DPPs suitable to describe and quantify similarity between objects. DPPs favor diversity of the center points in initial sets, so that sets with similar points have less chance of being generated than sets with very distinct points. Most current inital sets are generated with center points sampled uniformly at random. We show through extensive simulations that, contrary to DPPs, this technique fails both to ensure diversity, and to obtain a good coverage of all data facets. The latter are two key properties that make DPPs achieve good performance. Simulations with artificial datasets and applications to real datasets show that determinantal consensus clustering outperforms consensus clusterings which are based on uniform random sampling of center points.</p></div>\",\"PeriodicalId\":49270,\"journal\":{\"name\":\"Advances in Data Analysis and Classification\",\"volume\":\"17 4\",\"pages\":\"829 - 858\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Data Analysis and Classification\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11634-022-00514-6\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Data Analysis and Classification","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s11634-022-00514-6","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

摘要

给定算法的随机重启会产生许多分区,这些分区可以聚合以产生一致性集群。集成方法已被认为是比单一聚类算法更稳健的数据聚类方法。我们建议使用确定点过程或DPP来随机重新启动基于初始中心点集的聚类算法,例如k-medoid或k-means。DPP和基于核的方法之间的关系使得DPP适合于描述和量化对象之间的相似性。DPP倾向于初始集合中中心点的多样性,所以具有相似点的集合比具有非常不同点的集合生成的机会更小。大多数当前的初始集是由随机均匀采样的中心点生成的。我们通过广泛的模拟表明,与DPP相反,这种技术既不能确保多样性,也不能获得对所有数据方面的良好覆盖。后者是使DP获得良好性能的两个关键特性。对人工数据集的模拟和对真实数据集的应用表明,确定性一致性聚类优于基于中心点均匀随机采样的一致性聚类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Determinantal consensus clustering

Determinantal consensus clustering

Random restart of a given algorithm produces many partitions that can be aggregated to yield a consensus clustering. Ensemble methods have been recognized as more robust approaches for data clustering than single clustering algorithms. We propose the use of determinantal point processes or DPPs for the random restart of clustering algorithms based on initial sets of center points, such as k-medoids or k-means. The relation between DPPs and kernel-based methods makes DPPs suitable to describe and quantify similarity between objects. DPPs favor diversity of the center points in initial sets, so that sets with similar points have less chance of being generated than sets with very distinct points. Most current inital sets are generated with center points sampled uniformly at random. We show through extensive simulations that, contrary to DPPs, this technique fails both to ensure diversity, and to obtain a good coverage of all data facets. The latter are two key properties that make DPPs achieve good performance. Simulations with artificial datasets and applications to real datasets show that determinantal consensus clustering outperforms consensus clusterings which are based on uniform random sampling of center points.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
6.20%
发文量
45
审稿时长
>12 weeks
期刊介绍: The international journal Advances in Data Analysis and Classification (ADAC) is designed as a forum for high standard publications on research and applications concerning the extraction of knowable aspects from many types of data. It publishes articles on such topics as structural, quantitative, or statistical approaches for the analysis of data; advances in classification, clustering, and pattern recognition methods; strategies for modeling complex data and mining large data sets; methods for the extraction of knowledge from data, and applications of advanced methods in specific domains of practice. Articles illustrate how new domain-specific knowledge can be made available from data by skillful use of data analysis methods. The journal also publishes survey papers that outline, and illuminate the basic ideas and techniques of special approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信