连续时间过程的分布性质:从CIR到bates

IF 1.4 4区 数学 Q2 STATISTICS & PROBABILITY
Ostap Okhrin, Michael Rockinger, Manuel Schmid
{"title":"连续时间过程的分布性质:从CIR到bates","authors":"Ostap Okhrin,&nbsp;Michael Rockinger,&nbsp;Manuel Schmid","doi":"10.1007/s10182-022-00459-3","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we compute closed-form expressions of moments and comoments for the CIR process which allows us to provide a new construction of the transition probability density based on a moment argument that differs from the historic approach. For Bates’ model with stochastic volatility and jumps, we show that finite difference approximations of higher moments such as the skewness and the kurtosis are unstable and, as a remedy, provide exact analytic formulas for log-returns. Our approach does not assume a constant mean for log-price differentials but correctly incorporates volatility resulting from Ito’s lemma. We also provide R, MATLAB, and Mathematica modules with exact implementations of the theoretical conditional and unconditional moments. These modules should prove useful for empirical research.</p></div>","PeriodicalId":55446,"journal":{"name":"Asta-Advances in Statistical Analysis","volume":"107 3","pages":"397 - 419"},"PeriodicalIF":1.4000,"publicationDate":"2022-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10182-022-00459-3.pdf","citationCount":"1","resultStr":"{\"title\":\"Distributional properties of continuous time processes: from CIR to bates\",\"authors\":\"Ostap Okhrin,&nbsp;Michael Rockinger,&nbsp;Manuel Schmid\",\"doi\":\"10.1007/s10182-022-00459-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we compute closed-form expressions of moments and comoments for the CIR process which allows us to provide a new construction of the transition probability density based on a moment argument that differs from the historic approach. For Bates’ model with stochastic volatility and jumps, we show that finite difference approximations of higher moments such as the skewness and the kurtosis are unstable and, as a remedy, provide exact analytic formulas for log-returns. Our approach does not assume a constant mean for log-price differentials but correctly incorporates volatility resulting from Ito’s lemma. We also provide R, MATLAB, and Mathematica modules with exact implementations of the theoretical conditional and unconditional moments. These modules should prove useful for empirical research.</p></div>\",\"PeriodicalId\":55446,\"journal\":{\"name\":\"Asta-Advances in Statistical Analysis\",\"volume\":\"107 3\",\"pages\":\"397 - 419\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10182-022-00459-3.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asta-Advances in Statistical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10182-022-00459-3\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asta-Advances in Statistical Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10182-022-00459-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们计算了CIR过程的矩和共轭矩的闭合形式表达式,这使我们能够基于不同于历史方法的矩自变量来提供过渡概率密度的新构造。对于具有随机波动性和跳跃性的Bates模型,我们证明了偏度和峰度等高阶矩的有限差分近似是不稳定的,并且作为补救,我们提供了对数收益的精确分析公式。我们的方法没有假设对数价差的平均值不变,而是正确地结合了伊藤引理产生的波动性。我们还为R、MATLAB和Mathematica模块提供了理论条件矩和无条件矩的精确实现。这些模块应被证明对实证研究有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distributional properties of continuous time processes: from CIR to bates

In this paper, we compute closed-form expressions of moments and comoments for the CIR process which allows us to provide a new construction of the transition probability density based on a moment argument that differs from the historic approach. For Bates’ model with stochastic volatility and jumps, we show that finite difference approximations of higher moments such as the skewness and the kurtosis are unstable and, as a remedy, provide exact analytic formulas for log-returns. Our approach does not assume a constant mean for log-price differentials but correctly incorporates volatility resulting from Ito’s lemma. We also provide R, MATLAB, and Mathematica modules with exact implementations of the theoretical conditional and unconditional moments. These modules should prove useful for empirical research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Asta-Advances in Statistical Analysis
Asta-Advances in Statistical Analysis 数学-统计学与概率论
CiteScore
2.20
自引率
14.30%
发文量
39
审稿时长
>12 weeks
期刊介绍: AStA - Advances in Statistical Analysis, a journal of the German Statistical Society, is published quarterly and presents original contributions on statistical methods and applications and review articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信