基于角度测量的空间相对导航综述

IF 2.7 1区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Baichun Gong, Sha Wang, Shuang Li, Xianqiang Li
{"title":"基于角度测量的空间相对导航综述","authors":"Baichun Gong,&nbsp;Sha Wang,&nbsp;Shuang Li,&nbsp;Xianqiang Li","doi":"10.1007/s42064-022-0152-2","DOIUrl":null,"url":null,"abstract":"<div><p>Relative navigation is a key enabling technology for space missions such as on-orbit servicing and space situational awareness. Given that there are several special advantages of space relative navigation using angles-only measurements from passive optical sensors, angles-only relative navigation is considered as one of the best potential approaches in the field of space relative navigation. However, angles-only relative navigation is well-known for its range observability problem. To overcome this observability problem, many studies have been conducted over the past decades. In this study, we present a comprehensive review of state-of-the-art space relative navigation based on angles-only measurements. The emphasis is on the observability problem and solutions to angles-only relative navigation, where the review of the solutions is categorized into four classes based on the intrinsic principle: complicated dynamics approach, multi-line of sight (multi-LOS) approach, sensor offset center-of-mass approach, and orbit maneuver approach. Then, the flight demonstration results of angles-only relative navigation in the two projects are briefly reviewed. Finally, conclusions of this study and recommendations for further research are presented.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":52291,"journal":{"name":"Astrodynamics","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2022-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Review of space relative navigation based on angles-only measurements\",\"authors\":\"Baichun Gong,&nbsp;Sha Wang,&nbsp;Shuang Li,&nbsp;Xianqiang Li\",\"doi\":\"10.1007/s42064-022-0152-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Relative navigation is a key enabling technology for space missions such as on-orbit servicing and space situational awareness. Given that there are several special advantages of space relative navigation using angles-only measurements from passive optical sensors, angles-only relative navigation is considered as one of the best potential approaches in the field of space relative navigation. However, angles-only relative navigation is well-known for its range observability problem. To overcome this observability problem, many studies have been conducted over the past decades. In this study, we present a comprehensive review of state-of-the-art space relative navigation based on angles-only measurements. The emphasis is on the observability problem and solutions to angles-only relative navigation, where the review of the solutions is categorized into four classes based on the intrinsic principle: complicated dynamics approach, multi-line of sight (multi-LOS) approach, sensor offset center-of-mass approach, and orbit maneuver approach. Then, the flight demonstration results of angles-only relative navigation in the two projects are briefly reviewed. Finally, conclusions of this study and recommendations for further research are presented.\\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":52291,\"journal\":{\"name\":\"Astrodynamics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2022-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astrodynamics\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42064-022-0152-2\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrodynamics","FirstCategoryId":"1087","ListUrlMain":"https://link.springer.com/article/10.1007/s42064-022-0152-2","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 4

摘要

相对导航是实现在轨服务和空间态势感知等空间任务的关键技术。鉴于使用无源光学传感器的纯角度测量进行空间相对导航有几个特殊优势,纯角度相对导航被认为是空间相对导航领域中最有潜力的方法之一。然而,只有角度的相对导航以其距离可观测性问题而闻名。为了克服这个可观察性问题,在过去的几十年里进行了许多研究。在这项研究中,我们对基于纯角度测量的最先进的空间相对导航进行了全面回顾。重点是可观测性问题和仅角度相对导航的解决方案,其中根据内在原理将解决方案分为四类:复杂动力学方法、多视线方法、传感器偏移质心方法和轨道机动方法。然后,简要回顾了两个项目中纯角度相对导航的飞行演示结果。最后,提出了本研究的结论和进一步研究的建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Review of space relative navigation based on angles-only measurements

Relative navigation is a key enabling technology for space missions such as on-orbit servicing and space situational awareness. Given that there are several special advantages of space relative navigation using angles-only measurements from passive optical sensors, angles-only relative navigation is considered as one of the best potential approaches in the field of space relative navigation. However, angles-only relative navigation is well-known for its range observability problem. To overcome this observability problem, many studies have been conducted over the past decades. In this study, we present a comprehensive review of state-of-the-art space relative navigation based on angles-only measurements. The emphasis is on the observability problem and solutions to angles-only relative navigation, where the review of the solutions is categorized into four classes based on the intrinsic principle: complicated dynamics approach, multi-line of sight (multi-LOS) approach, sensor offset center-of-mass approach, and orbit maneuver approach. Then, the flight demonstration results of angles-only relative navigation in the two projects are briefly reviewed. Finally, conclusions of this study and recommendations for further research are presented.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Astrodynamics
Astrodynamics Engineering-Aerospace Engineering
CiteScore
6.90
自引率
34.40%
发文量
32
期刊介绍: Astrodynamics is a peer-reviewed international journal that is co-published by Tsinghua University Press and Springer. The high-quality peer-reviewed articles of original research, comprehensive review, mission accomplishments, and technical comments in all fields of astrodynamics will be given priorities for publication. In addition, related research in astronomy and astrophysics that takes advantages of the analytical and computational methods of astrodynamics is also welcome. Astrodynamics would like to invite all of the astrodynamics specialists to submit their research articles to this new journal. Currently, the scope of the journal includes, but is not limited to:Fundamental orbital dynamicsSpacecraft trajectory optimization and space mission designOrbit determination and prediction, autonomous orbital navigationSpacecraft attitude determination, control, and dynamicsGuidance and control of spacecraft and space robotsSpacecraft constellation design and formation flyingModelling, analysis, and optimization of innovative space systemsNovel concepts for space engineering and interdisciplinary applicationsThe effort of the Editorial Board will be ensuring the journal to publish novel researches that advance the field, and will provide authors with a productive, fair, and timely review experience. It is our sincere hope that all researchers in the field of astrodynamics will eagerly access this journal, Astrodynamics, as either authors or readers, making it an illustrious journal that will shape our future space explorations and discoveries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信