不确定条件下动力着陆闭环深度神经网络最优控制算法及误差分析

IF 2.7 1区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Wenbo Li, Yu Song, Lin Cheng, Shengping Gong
{"title":"不确定条件下动力着陆闭环深度神经网络最优控制算法及误差分析","authors":"Wenbo Li,&nbsp;Yu Song,&nbsp;Lin Cheng,&nbsp;Shengping Gong","doi":"10.1007/s42064-022-0153-1","DOIUrl":null,"url":null,"abstract":"<div><p>Real-time guidance is critical for the vertical recovery of rockets. However, traditional sequential convex optimization algorithms suffer from shortcomings in terms of their poor real-time performance. This work focuses on applying the deep learning-based closed-loop guidance algorithm and error propagation analysis for powered landing, thereby significantly improving the real-time performance. First, a controller consisting of two deep neural networks is constructed to map the thrust direction and magnitude of the rocket according to the state variables. Thereafter, the analytical transition relationships between different uncertainty sources and the state propagation error in a single guidance period are analyzed by adopting linear covariance analysis. Finally, the accuracy of the proposed methods is verified via a comparison with the indirect method and Monte Carlo simulations. Compared with the traditional sequential convex optimization algorithm, our method reduces the computation time from 75 ms to less than 1 ms. Therefore, it shows potential for online applications.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":52291,"journal":{"name":"Astrodynamics","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2022-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42064-022-0153-1.pdf","citationCount":"1","resultStr":"{\"title\":\"Closed-loop deep neural network optimal control algorithm and error analysis for powered landing under uncertainties\",\"authors\":\"Wenbo Li,&nbsp;Yu Song,&nbsp;Lin Cheng,&nbsp;Shengping Gong\",\"doi\":\"10.1007/s42064-022-0153-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Real-time guidance is critical for the vertical recovery of rockets. However, traditional sequential convex optimization algorithms suffer from shortcomings in terms of their poor real-time performance. This work focuses on applying the deep learning-based closed-loop guidance algorithm and error propagation analysis for powered landing, thereby significantly improving the real-time performance. First, a controller consisting of two deep neural networks is constructed to map the thrust direction and magnitude of the rocket according to the state variables. Thereafter, the analytical transition relationships between different uncertainty sources and the state propagation error in a single guidance period are analyzed by adopting linear covariance analysis. Finally, the accuracy of the proposed methods is verified via a comparison with the indirect method and Monte Carlo simulations. Compared with the traditional sequential convex optimization algorithm, our method reduces the computation time from 75 ms to less than 1 ms. Therefore, it shows potential for online applications.\\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":52291,\"journal\":{\"name\":\"Astrodynamics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2022-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s42064-022-0153-1.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astrodynamics\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42064-022-0153-1\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrodynamics","FirstCategoryId":"1087","ListUrlMain":"https://link.springer.com/article/10.1007/s42064-022-0153-1","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 1

摘要

实时制导对于火箭的垂直回收至关重要。然而,传统的序列凸优化算法存在实时性差的缺点。这项工作的重点是将基于深度学习的闭环制导算法和误差传播分析应用于动力着陆,从而显著提高实时性能。首先,构造了一个由两个深度神经网络组成的控制器,根据状态变量映射火箭的推力方向和大小。然后,采用线性协方差分析方法,分析了不同不确定性源与单个制导周期内状态传播误差之间的分析转换关系。最后,通过与间接方法和蒙特卡罗模拟的比较,验证了所提出方法的准确性。与传统的序列凸优化算法相比,我们的方法将计算时间从75ms减少到1ms以下。因此,它显示出在线应用的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Closed-loop deep neural network optimal control algorithm and error analysis for powered landing under uncertainties

Real-time guidance is critical for the vertical recovery of rockets. However, traditional sequential convex optimization algorithms suffer from shortcomings in terms of their poor real-time performance. This work focuses on applying the deep learning-based closed-loop guidance algorithm and error propagation analysis for powered landing, thereby significantly improving the real-time performance. First, a controller consisting of two deep neural networks is constructed to map the thrust direction and magnitude of the rocket according to the state variables. Thereafter, the analytical transition relationships between different uncertainty sources and the state propagation error in a single guidance period are analyzed by adopting linear covariance analysis. Finally, the accuracy of the proposed methods is verified via a comparison with the indirect method and Monte Carlo simulations. Compared with the traditional sequential convex optimization algorithm, our method reduces the computation time from 75 ms to less than 1 ms. Therefore, it shows potential for online applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Astrodynamics
Astrodynamics Engineering-Aerospace Engineering
CiteScore
6.90
自引率
34.40%
发文量
32
期刊介绍: Astrodynamics is a peer-reviewed international journal that is co-published by Tsinghua University Press and Springer. The high-quality peer-reviewed articles of original research, comprehensive review, mission accomplishments, and technical comments in all fields of astrodynamics will be given priorities for publication. In addition, related research in astronomy and astrophysics that takes advantages of the analytical and computational methods of astrodynamics is also welcome. Astrodynamics would like to invite all of the astrodynamics specialists to submit their research articles to this new journal. Currently, the scope of the journal includes, but is not limited to:Fundamental orbital dynamicsSpacecraft trajectory optimization and space mission designOrbit determination and prediction, autonomous orbital navigationSpacecraft attitude determination, control, and dynamicsGuidance and control of spacecraft and space robotsSpacecraft constellation design and formation flyingModelling, analysis, and optimization of innovative space systemsNovel concepts for space engineering and interdisciplinary applicationsThe effort of the Editorial Board will be ensuring the journal to publish novel researches that advance the field, and will provide authors with a productive, fair, and timely review experience. It is our sincere hope that all researchers in the field of astrodynamics will eagerly access this journal, Astrodynamics, as either authors or readers, making it an illustrious journal that will shape our future space explorations and discoveries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信