Marco Bassetto, Alessandro A. Quarta, Giovanni Mengali
{"title":"具有周向推力的对数螺旋轨迹的解析解及其任务应用","authors":"Marco Bassetto, Alessandro A. Quarta, Giovanni Mengali","doi":"10.1007/s42064-022-0135-3","DOIUrl":null,"url":null,"abstract":"<div><p>This study made use of a shape-based method to analyze the orbital dynamics of a spacecraft subject to a continuous propulsive acceleration acting along the circumferential direction. Under the assumption of a logarithmic spiral trajectory, an exact solution to the equations of motion exists, which allows the spacecraft state variables and flight time to be expressed as a function of the angular coordinate. There is also a case characterized by specific initial conditions in which the time evolution of the state variables may be analytically determined. In this context, the presented solution is used to analyze circle-to-circle trajectories, where the combination of two impulsive maneuvers and a logarithmic spiral path are used to accomplish the transfer. The determined results are then applied to the achievement of the Earth—Mars and the Earth—Venus transfers using actual data from a recent thruster developed by NASA.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":52291,"journal":{"name":"Astrodynamics","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2022-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42064-022-0135-3.pdf","citationCount":"0","resultStr":"{\"title\":\"Analytical solution to logarithmic spiral trajectories with circumferential thrust and mission applications\",\"authors\":\"Marco Bassetto, Alessandro A. Quarta, Giovanni Mengali\",\"doi\":\"10.1007/s42064-022-0135-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study made use of a shape-based method to analyze the orbital dynamics of a spacecraft subject to a continuous propulsive acceleration acting along the circumferential direction. Under the assumption of a logarithmic spiral trajectory, an exact solution to the equations of motion exists, which allows the spacecraft state variables and flight time to be expressed as a function of the angular coordinate. There is also a case characterized by specific initial conditions in which the time evolution of the state variables may be analytically determined. In this context, the presented solution is used to analyze circle-to-circle trajectories, where the combination of two impulsive maneuvers and a logarithmic spiral path are used to accomplish the transfer. The determined results are then applied to the achievement of the Earth—Mars and the Earth—Venus transfers using actual data from a recent thruster developed by NASA.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":52291,\"journal\":{\"name\":\"Astrodynamics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2022-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s42064-022-0135-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astrodynamics\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42064-022-0135-3\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrodynamics","FirstCategoryId":"1087","ListUrlMain":"https://link.springer.com/article/10.1007/s42064-022-0135-3","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Analytical solution to logarithmic spiral trajectories with circumferential thrust and mission applications
This study made use of a shape-based method to analyze the orbital dynamics of a spacecraft subject to a continuous propulsive acceleration acting along the circumferential direction. Under the assumption of a logarithmic spiral trajectory, an exact solution to the equations of motion exists, which allows the spacecraft state variables and flight time to be expressed as a function of the angular coordinate. There is also a case characterized by specific initial conditions in which the time evolution of the state variables may be analytically determined. In this context, the presented solution is used to analyze circle-to-circle trajectories, where the combination of two impulsive maneuvers and a logarithmic spiral path are used to accomplish the transfer. The determined results are then applied to the achievement of the Earth—Mars and the Earth—Venus transfers using actual data from a recent thruster developed by NASA.
期刊介绍:
Astrodynamics is a peer-reviewed international journal that is co-published by Tsinghua University Press and Springer. The high-quality peer-reviewed articles of original research, comprehensive review, mission accomplishments, and technical comments in all fields of astrodynamics will be given priorities for publication. In addition, related research in astronomy and astrophysics that takes advantages of the analytical and computational methods of astrodynamics is also welcome. Astrodynamics would like to invite all of the astrodynamics specialists to submit their research articles to this new journal. Currently, the scope of the journal includes, but is not limited to:Fundamental orbital dynamicsSpacecraft trajectory optimization and space mission designOrbit determination and prediction, autonomous orbital navigationSpacecraft attitude determination, control, and dynamicsGuidance and control of spacecraft and space robotsSpacecraft constellation design and formation flyingModelling, analysis, and optimization of innovative space systemsNovel concepts for space engineering and interdisciplinary applicationsThe effort of the Editorial Board will be ensuring the journal to publish novel researches that advance the field, and will provide authors with a productive, fair, and timely review experience. It is our sincere hope that all researchers in the field of astrodynamics will eagerly access this journal, Astrodynamics, as either authors or readers, making it an illustrious journal that will shape our future space explorations and discoveries.