{"title":"多航天器姿态一致性研究综述","authors":"Ti Chen, Jinjun Shan, Hao Wen, Shidong Xu","doi":"10.1007/s42064-022-0142-4","DOIUrl":null,"url":null,"abstract":"<div><p>A group of cooperative agents can finish complicated missions that are difficult for a large machine. In the past two decades, spacecraft attitude coordination has attracted significant research attention owing to its wide potential applications. This paper presents a survey of recent research progress on the spacecraft attitude consensus problem, paying particular attention to the papers published in major aerospace, dynamics, automation, and robotics journals since 2015. Attitude consensus concepts for centralized, decentralized, and distributed cases are reviewed. This overview summarizes results on system dynamics and consensus algorithms based on frequently used attitude representations, such as Euler angles, modified Rodrigues parameters, unit quaternions, and rotation matrices. Studies conducted under complicated operating conditions are also covered. Experimental results on attitude consensus are discussed. In the final section, the main conclusions are drawn and several potential research directions are provided.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":52291,"journal":{"name":"Astrodynamics","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2022-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Review of attitude consensus of multiple spacecraft\",\"authors\":\"Ti Chen, Jinjun Shan, Hao Wen, Shidong Xu\",\"doi\":\"10.1007/s42064-022-0142-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A group of cooperative agents can finish complicated missions that are difficult for a large machine. In the past two decades, spacecraft attitude coordination has attracted significant research attention owing to its wide potential applications. This paper presents a survey of recent research progress on the spacecraft attitude consensus problem, paying particular attention to the papers published in major aerospace, dynamics, automation, and robotics journals since 2015. Attitude consensus concepts for centralized, decentralized, and distributed cases are reviewed. This overview summarizes results on system dynamics and consensus algorithms based on frequently used attitude representations, such as Euler angles, modified Rodrigues parameters, unit quaternions, and rotation matrices. Studies conducted under complicated operating conditions are also covered. Experimental results on attitude consensus are discussed. In the final section, the main conclusions are drawn and several potential research directions are provided.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":52291,\"journal\":{\"name\":\"Astrodynamics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2022-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astrodynamics\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42064-022-0142-4\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrodynamics","FirstCategoryId":"1087","ListUrlMain":"https://link.springer.com/article/10.1007/s42064-022-0142-4","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Review of attitude consensus of multiple spacecraft
A group of cooperative agents can finish complicated missions that are difficult for a large machine. In the past two decades, spacecraft attitude coordination has attracted significant research attention owing to its wide potential applications. This paper presents a survey of recent research progress on the spacecraft attitude consensus problem, paying particular attention to the papers published in major aerospace, dynamics, automation, and robotics journals since 2015. Attitude consensus concepts for centralized, decentralized, and distributed cases are reviewed. This overview summarizes results on system dynamics and consensus algorithms based on frequently used attitude representations, such as Euler angles, modified Rodrigues parameters, unit quaternions, and rotation matrices. Studies conducted under complicated operating conditions are also covered. Experimental results on attitude consensus are discussed. In the final section, the main conclusions are drawn and several potential research directions are provided.
期刊介绍:
Astrodynamics is a peer-reviewed international journal that is co-published by Tsinghua University Press and Springer. The high-quality peer-reviewed articles of original research, comprehensive review, mission accomplishments, and technical comments in all fields of astrodynamics will be given priorities for publication. In addition, related research in astronomy and astrophysics that takes advantages of the analytical and computational methods of astrodynamics is also welcome. Astrodynamics would like to invite all of the astrodynamics specialists to submit their research articles to this new journal. Currently, the scope of the journal includes, but is not limited to:Fundamental orbital dynamicsSpacecraft trajectory optimization and space mission designOrbit determination and prediction, autonomous orbital navigationSpacecraft attitude determination, control, and dynamicsGuidance and control of spacecraft and space robotsSpacecraft constellation design and formation flyingModelling, analysis, and optimization of innovative space systemsNovel concepts for space engineering and interdisciplinary applicationsThe effort of the Editorial Board will be ensuring the journal to publish novel researches that advance the field, and will provide authors with a productive, fair, and timely review experience. It is our sincere hope that all researchers in the field of astrodynamics will eagerly access this journal, Astrodynamics, as either authors or readers, making it an illustrious journal that will shape our future space explorations and discoveries.