David Ailabouni, Andreas Meister, Karlheinz Spindler
{"title":"姿态机动避开禁止的方向","authors":"David Ailabouni, Andreas Meister, Karlheinz Spindler","doi":"10.1007/s42064-023-0163-7","DOIUrl":null,"url":null,"abstract":"<div><p>Many space missions require the execution of large-angle attitude slews during which stringent pointing constraints must be satisfied. For example, the pointing direction of a space telescope must be kept away from directions to bright objects, maintaining a prescribed safety margin. In this paper we propose an open-loop attitude control algorithm which determines a rest-to-rest maneuver between prescribed attitudes while ensuring that any of an arbitrary number of body-fixed directions of light-sensitive instruments stays clear of any of an arbitrary number of space-fixed directions. The approach is based on an application of a version of Pontryagin’s Maximum Principle tailor-made for optimal control problems on Lie groups, and the pointing constraints are ensured by a judicious choice of the cost functional. The existence of up to three first integrals of the resulting system equations is established, depending on the number of light-sensitive and forbidden directions. These first integrals can be exploited in the numerical implementation of the attitude control algorithm, as is shown in the case of one light-sensitive and several forbidden directions. The results of the test cases presented confirm the applicability of the proposed algorithm.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":52291,"journal":{"name":"Astrodynamics","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42064-023-0163-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Attitude maneuvers avoiding forbidden directions\",\"authors\":\"David Ailabouni, Andreas Meister, Karlheinz Spindler\",\"doi\":\"10.1007/s42064-023-0163-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Many space missions require the execution of large-angle attitude slews during which stringent pointing constraints must be satisfied. For example, the pointing direction of a space telescope must be kept away from directions to bright objects, maintaining a prescribed safety margin. In this paper we propose an open-loop attitude control algorithm which determines a rest-to-rest maneuver between prescribed attitudes while ensuring that any of an arbitrary number of body-fixed directions of light-sensitive instruments stays clear of any of an arbitrary number of space-fixed directions. The approach is based on an application of a version of Pontryagin’s Maximum Principle tailor-made for optimal control problems on Lie groups, and the pointing constraints are ensured by a judicious choice of the cost functional. The existence of up to three first integrals of the resulting system equations is established, depending on the number of light-sensitive and forbidden directions. These first integrals can be exploited in the numerical implementation of the attitude control algorithm, as is shown in the case of one light-sensitive and several forbidden directions. The results of the test cases presented confirm the applicability of the proposed algorithm.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":52291,\"journal\":{\"name\":\"Astrodynamics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s42064-023-0163-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astrodynamics\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42064-023-0163-7\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrodynamics","FirstCategoryId":"1087","ListUrlMain":"https://link.springer.com/article/10.1007/s42064-023-0163-7","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Many space missions require the execution of large-angle attitude slews during which stringent pointing constraints must be satisfied. For example, the pointing direction of a space telescope must be kept away from directions to bright objects, maintaining a prescribed safety margin. In this paper we propose an open-loop attitude control algorithm which determines a rest-to-rest maneuver between prescribed attitudes while ensuring that any of an arbitrary number of body-fixed directions of light-sensitive instruments stays clear of any of an arbitrary number of space-fixed directions. The approach is based on an application of a version of Pontryagin’s Maximum Principle tailor-made for optimal control problems on Lie groups, and the pointing constraints are ensured by a judicious choice of the cost functional. The existence of up to three first integrals of the resulting system equations is established, depending on the number of light-sensitive and forbidden directions. These first integrals can be exploited in the numerical implementation of the attitude control algorithm, as is shown in the case of one light-sensitive and several forbidden directions. The results of the test cases presented confirm the applicability of the proposed algorithm.
期刊介绍:
Astrodynamics is a peer-reviewed international journal that is co-published by Tsinghua University Press and Springer. The high-quality peer-reviewed articles of original research, comprehensive review, mission accomplishments, and technical comments in all fields of astrodynamics will be given priorities for publication. In addition, related research in astronomy and astrophysics that takes advantages of the analytical and computational methods of astrodynamics is also welcome. Astrodynamics would like to invite all of the astrodynamics specialists to submit their research articles to this new journal. Currently, the scope of the journal includes, but is not limited to:Fundamental orbital dynamicsSpacecraft trajectory optimization and space mission designOrbit determination and prediction, autonomous orbital navigationSpacecraft attitude determination, control, and dynamicsGuidance and control of spacecraft and space robotsSpacecraft constellation design and formation flyingModelling, analysis, and optimization of innovative space systemsNovel concepts for space engineering and interdisciplinary applicationsThe effort of the Editorial Board will be ensuring the journal to publish novel researches that advance the field, and will provide authors with a productive, fair, and timely review experience. It is our sincere hope that all researchers in the field of astrodynamics will eagerly access this journal, Astrodynamics, as either authors or readers, making it an illustrious journal that will shape our future space explorations and discoveries.