分离条件下任意维格里菲斯几乎极小解的epsilon -正则性

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Camille Labourie, Antoine Lemenant
{"title":"分离条件下任意维格里菲斯几乎极小解的epsilon -正则性","authors":"Camille Labourie,&nbsp;Antoine Lemenant","doi":"10.1007/s00205-023-01935-z","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we prove that if (<i>u</i>, <i>K</i>) is an almost-minimizer of the Griffith functional and <i>K</i> is <span>\\(\\varepsilon \\)</span>-close to a plane in some ball <span>\\(B\\subset {\\mathbb {R}}^N\\)</span> while separating the ball <i>B</i> in two big parts, then <i>K</i> is <span>\\(C^{1,\\alpha }\\)</span> in a slightly smaller ball. Our result contains and generalizes the 2 dimensional result of <span>Babadjian</span> et al. (J Eur Math Soc 24(7):2443–2492, 2022), with a different and more sophisticate approach inspired by <span>Lemenant</span> (Ann Sc Norm Super Pisa Cl Sci 9(2):351–384, 2010; Ann Sc Norm Super Pisa Cl Sci 10(3):561–609, 2011), using also <span>Labourie</span> (J Geom Anal 31(10):10024–10135, 2021) in order to adapt a part of the argument to Griffith minimizers.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Epsilon-Regularity for Griffith Almost-Minimizers in Any Dimension Under a Separating Condition\",\"authors\":\"Camille Labourie,&nbsp;Antoine Lemenant\",\"doi\":\"10.1007/s00205-023-01935-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper we prove that if (<i>u</i>, <i>K</i>) is an almost-minimizer of the Griffith functional and <i>K</i> is <span>\\\\(\\\\varepsilon \\\\)</span>-close to a plane in some ball <span>\\\\(B\\\\subset {\\\\mathbb {R}}^N\\\\)</span> while separating the ball <i>B</i> in two big parts, then <i>K</i> is <span>\\\\(C^{1,\\\\alpha }\\\\)</span> in a slightly smaller ball. Our result contains and generalizes the 2 dimensional result of <span>Babadjian</span> et al. (J Eur Math Soc 24(7):2443–2492, 2022), with a different and more sophisticate approach inspired by <span>Lemenant</span> (Ann Sc Norm Super Pisa Cl Sci 9(2):351–384, 2010; Ann Sc Norm Super Pisa Cl Sci 10(3):561–609, 2011), using also <span>Labourie</span> (J Geom Anal 31(10):10024–10135, 2021) in order to adapt a part of the argument to Griffith minimizers.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00205-023-01935-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-023-01935-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们证明了如果(u, K)是Griffith泛函的几乎最小值,并且K在将球B分成两大部分时,在某个球\(B\subset {\mathbb {R}}^N\)中\(\varepsilon \) -接近一个平面,那么K在一个稍小的球中是\(C^{1,\alpha }\)。我们的结果包含并推广了Babadjian等人的二维结果(J Eur Math Soc 24(7):2443 - 2492,2022),并采用了一种受element启发的不同且更复杂的方法(Ann Sc Norm Super Pisa Cl Sci 9(2): 351-384, 2010;Ann Sc Norm Super Pisa Cl Sci 10(3):561 - 609,2011),并使用Labourie (J Geom Anal 31(10):10024 - 10135,2021)将部分论点改编为Griffith minimizers。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Epsilon-Regularity for Griffith Almost-Minimizers in Any Dimension Under a Separating Condition

In this paper we prove that if (uK) is an almost-minimizer of the Griffith functional and K is \(\varepsilon \)-close to a plane in some ball \(B\subset {\mathbb {R}}^N\) while separating the ball B in two big parts, then K is \(C^{1,\alpha }\) in a slightly smaller ball. Our result contains and generalizes the 2 dimensional result of Babadjian et al. (J Eur Math Soc 24(7):2443–2492, 2022), with a different and more sophisticate approach inspired by Lemenant (Ann Sc Norm Super Pisa Cl Sci 9(2):351–384, 2010; Ann Sc Norm Super Pisa Cl Sci 10(3):561–609, 2011), using also Labourie (J Geom Anal 31(10):10024–10135, 2021) in order to adapt a part of the argument to Griffith minimizers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信