{"title":"分离条件下任意维格里菲斯几乎极小解的epsilon -正则性","authors":"Camille Labourie, Antoine Lemenant","doi":"10.1007/s00205-023-01935-z","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we prove that if (<i>u</i>, <i>K</i>) is an almost-minimizer of the Griffith functional and <i>K</i> is <span>\\(\\varepsilon \\)</span>-close to a plane in some ball <span>\\(B\\subset {\\mathbb {R}}^N\\)</span> while separating the ball <i>B</i> in two big parts, then <i>K</i> is <span>\\(C^{1,\\alpha }\\)</span> in a slightly smaller ball. Our result contains and generalizes the 2 dimensional result of <span>Babadjian</span> et al. (J Eur Math Soc 24(7):2443–2492, 2022), with a different and more sophisticate approach inspired by <span>Lemenant</span> (Ann Sc Norm Super Pisa Cl Sci 9(2):351–384, 2010; Ann Sc Norm Super Pisa Cl Sci 10(3):561–609, 2011), using also <span>Labourie</span> (J Geom Anal 31(10):10024–10135, 2021) in order to adapt a part of the argument to Griffith minimizers.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Epsilon-Regularity for Griffith Almost-Minimizers in Any Dimension Under a Separating Condition\",\"authors\":\"Camille Labourie, Antoine Lemenant\",\"doi\":\"10.1007/s00205-023-01935-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper we prove that if (<i>u</i>, <i>K</i>) is an almost-minimizer of the Griffith functional and <i>K</i> is <span>\\\\(\\\\varepsilon \\\\)</span>-close to a plane in some ball <span>\\\\(B\\\\subset {\\\\mathbb {R}}^N\\\\)</span> while separating the ball <i>B</i> in two big parts, then <i>K</i> is <span>\\\\(C^{1,\\\\alpha }\\\\)</span> in a slightly smaller ball. Our result contains and generalizes the 2 dimensional result of <span>Babadjian</span> et al. (J Eur Math Soc 24(7):2443–2492, 2022), with a different and more sophisticate approach inspired by <span>Lemenant</span> (Ann Sc Norm Super Pisa Cl Sci 9(2):351–384, 2010; Ann Sc Norm Super Pisa Cl Sci 10(3):561–609, 2011), using also <span>Labourie</span> (J Geom Anal 31(10):10024–10135, 2021) in order to adapt a part of the argument to Griffith minimizers.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00205-023-01935-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-023-01935-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Epsilon-Regularity for Griffith Almost-Minimizers in Any Dimension Under a Separating Condition
In this paper we prove that if (u, K) is an almost-minimizer of the Griffith functional and K is \(\varepsilon \)-close to a plane in some ball \(B\subset {\mathbb {R}}^N\) while separating the ball B in two big parts, then K is \(C^{1,\alpha }\) in a slightly smaller ball. Our result contains and generalizes the 2 dimensional result of Babadjian et al. (J Eur Math Soc 24(7):2443–2492, 2022), with a different and more sophisticate approach inspired by Lemenant (Ann Sc Norm Super Pisa Cl Sci 9(2):351–384, 2010; Ann Sc Norm Super Pisa Cl Sci 10(3):561–609, 2011), using also Labourie (J Geom Anal 31(10):10024–10135, 2021) in order to adapt a part of the argument to Griffith minimizers.