空间太阳能电站动态分析研究进展

IF 2.7 1区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Weipeng Hu, Zichen Deng
{"title":"空间太阳能电站动态分析研究进展","authors":"Weipeng Hu,&nbsp;Zichen Deng","doi":"10.1007/s42064-022-0144-2","DOIUrl":null,"url":null,"abstract":"<div><p>The concept of a space solar power station (SSPS) was proposed in 1968 as a potential approach for solving the energy crisis. In the past 50 years, several structural concepts have been proposed, but none have been sent into orbit. One of the main challenges of the SSPS is dynamic behavior prediction, which can supply the necessary information for control strategy design. The ultra-large size of the SSPS causes difficulties in its dynamic analysis, such as the ultra-low vibration frequency and large flexibility. In this paper, four approaches for the numerical analysis of the dynamic problems associated with the SSPS are reviewed: the finite element, absolute nodal coordinate, floating frame formulation, and structure-preserving methods. Both the merits and shortcomings of the above four approaches are introduced when they are employed in dynamic problems associated with the SSPS. Synthesizing the merits of the aforementioned four approaches, we believe that embedding the structure-preserving method into finite element software may be an effective way to perform a numerical analysis of the dynamic problems associated with the SSPS.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":52291,"journal":{"name":"Astrodynamics","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2022-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A review of dynamic analysis on space solar power station\",\"authors\":\"Weipeng Hu,&nbsp;Zichen Deng\",\"doi\":\"10.1007/s42064-022-0144-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The concept of a space solar power station (SSPS) was proposed in 1968 as a potential approach for solving the energy crisis. In the past 50 years, several structural concepts have been proposed, but none have been sent into orbit. One of the main challenges of the SSPS is dynamic behavior prediction, which can supply the necessary information for control strategy design. The ultra-large size of the SSPS causes difficulties in its dynamic analysis, such as the ultra-low vibration frequency and large flexibility. In this paper, four approaches for the numerical analysis of the dynamic problems associated with the SSPS are reviewed: the finite element, absolute nodal coordinate, floating frame formulation, and structure-preserving methods. Both the merits and shortcomings of the above four approaches are introduced when they are employed in dynamic problems associated with the SSPS. Synthesizing the merits of the aforementioned four approaches, we believe that embedding the structure-preserving method into finite element software may be an effective way to perform a numerical analysis of the dynamic problems associated with the SSPS.\\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":52291,\"journal\":{\"name\":\"Astrodynamics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2022-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astrodynamics\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42064-022-0144-2\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrodynamics","FirstCategoryId":"1087","ListUrlMain":"https://link.springer.com/article/10.1007/s42064-022-0144-2","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 6

摘要

空间太阳能发电站(SSPS)的概念于1968年被提出,作为解决能源危机的一种潜在方法。在过去的50年里,已经提出了几个结构概念,但没有一个被送入轨道。动态行为预测是控制系统的主要挑战之一,动态行为预测可以为控制策略的设计提供必要的信息。ssp的超大尺寸给其振动频率极低、柔性大等动力分析带来了困难。本文综述了四种与SSPS相关的动力学问题的数值分析方法:有限元法、绝对节点坐标法、浮动框架法和结构保形法。介绍了上述四种方法在求解与ssp相关的动态问题时的优缺点。综合上述四种方法的优点,我们认为将结构保持方法嵌入到有限元软件中可能是一种有效的方法,可以对与SSPS相关的动态问题进行数值分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A review of dynamic analysis on space solar power station

The concept of a space solar power station (SSPS) was proposed in 1968 as a potential approach for solving the energy crisis. In the past 50 years, several structural concepts have been proposed, but none have been sent into orbit. One of the main challenges of the SSPS is dynamic behavior prediction, which can supply the necessary information for control strategy design. The ultra-large size of the SSPS causes difficulties in its dynamic analysis, such as the ultra-low vibration frequency and large flexibility. In this paper, four approaches for the numerical analysis of the dynamic problems associated with the SSPS are reviewed: the finite element, absolute nodal coordinate, floating frame formulation, and structure-preserving methods. Both the merits and shortcomings of the above four approaches are introduced when they are employed in dynamic problems associated with the SSPS. Synthesizing the merits of the aforementioned four approaches, we believe that embedding the structure-preserving method into finite element software may be an effective way to perform a numerical analysis of the dynamic problems associated with the SSPS.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Astrodynamics
Astrodynamics Engineering-Aerospace Engineering
CiteScore
6.90
自引率
34.40%
发文量
32
期刊介绍: Astrodynamics is a peer-reviewed international journal that is co-published by Tsinghua University Press and Springer. The high-quality peer-reviewed articles of original research, comprehensive review, mission accomplishments, and technical comments in all fields of astrodynamics will be given priorities for publication. In addition, related research in astronomy and astrophysics that takes advantages of the analytical and computational methods of astrodynamics is also welcome. Astrodynamics would like to invite all of the astrodynamics specialists to submit their research articles to this new journal. Currently, the scope of the journal includes, but is not limited to:Fundamental orbital dynamicsSpacecraft trajectory optimization and space mission designOrbit determination and prediction, autonomous orbital navigationSpacecraft attitude determination, control, and dynamicsGuidance and control of spacecraft and space robotsSpacecraft constellation design and formation flyingModelling, analysis, and optimization of innovative space systemsNovel concepts for space engineering and interdisciplinary applicationsThe effort of the Editorial Board will be ensuring the journal to publish novel researches that advance the field, and will provide authors with a productive, fair, and timely review experience. It is our sincere hope that all researchers in the field of astrodynamics will eagerly access this journal, Astrodynamics, as either authors or readers, making it an illustrious journal that will shape our future space explorations and discoveries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信