{"title":"虚阿贝尔数域的Dedekind和与类数","authors":"S. R. Louboutin","doi":"10.1007/s10474-023-01369-9","DOIUrl":null,"url":null,"abstract":"<div><p>As a consequence of their work, Bruce C. Berndt, Ronald J. Evans, Larry Joel Goldstein and Michael Razar obtained a formula for the square of the class number of an imaginary quadratic number field in terms of Dedekind sums. We give a short proof of it and also express the relative class numbers of imaginary abelian number fields in terms of Dedekind sums.</p></div>","PeriodicalId":50894,"journal":{"name":"Acta Mathematica Hungarica","volume":"170 2","pages":"704 - 708"},"PeriodicalIF":0.6000,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dedekind sums and class numbers of imaginary abelian number fields\",\"authors\":\"S. R. Louboutin\",\"doi\":\"10.1007/s10474-023-01369-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>As a consequence of their work, Bruce C. Berndt, Ronald J. Evans, Larry Joel Goldstein and Michael Razar obtained a formula for the square of the class number of an imaginary quadratic number field in terms of Dedekind sums. We give a short proof of it and also express the relative class numbers of imaginary abelian number fields in terms of Dedekind sums.</p></div>\",\"PeriodicalId\":50894,\"journal\":{\"name\":\"Acta Mathematica Hungarica\",\"volume\":\"170 2\",\"pages\":\"704 - 708\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Hungarica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10474-023-01369-9\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Hungarica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10474-023-01369-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
作为他们工作的结果,Bruce C. Berndt, Ronald J. Evans, Larry Joel Goldstein和Michael Razar得到了一个用Dedekind和表示虚二次数域类数平方的公式。给出了一个简短的证明,并用Dedekind和表示了虚阿贝尔数域的相对类数。
Dedekind sums and class numbers of imaginary abelian number fields
As a consequence of their work, Bruce C. Berndt, Ronald J. Evans, Larry Joel Goldstein and Michael Razar obtained a formula for the square of the class number of an imaginary quadratic number field in terms of Dedekind sums. We give a short proof of it and also express the relative class numbers of imaginary abelian number fields in terms of Dedekind sums.
期刊介绍:
Acta Mathematica Hungarica is devoted to publishing research articles of top quality in all areas of pure and applied mathematics as well as in theoretical computer science. The journal is published yearly in three volumes (two issues per volume, in total 6 issues) in both print and electronic formats. Acta Mathematica Hungarica (formerly Acta Mathematica Academiae Scientiarum Hungaricae) was founded in 1950 by the Hungarian Academy of Sciences.