{"title":"关于Rankin-Selberg l -函数系数的渐近性","authors":"H. Lao, H. Zhu","doi":"10.1007/s10474-023-01357-z","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>f</i> and <i>g</i> be two different holomorphic cusp froms or Maass cusp forms for the full modular group <span>\\(SL(2,\\mathbb{Z})\\)</span>. We are interested in coefficients of Rankin–Selberg <i>L</i>-functions, and establish some bounds for </p><div><div><span>$$\\begin{aligned}\\sum_{n\\leq x} \\lambda_{{\\rm sym}^if\\times {\\rm sym}^jg}(n),\\quad\n\\sum_{n\\leq x}\\lambda_f(n^i)\\lambda_g(n^j),\n\\\\sum_{n\\leq x} |\\lambda_{{\\rm sym}^if\\times {\\rm sym}^jg}(n)|, \\quad \n\\sum_{n\\leq x}|\\lambda_f(n^i)\\lambda_g(n^j)|,\n \\end{aligned}$$</span></div></div><p>\n and </p><div><div><span>$$\\sum _{n\\leq x} \\max \\bigl\\{|\\lambda_{{\\rm sym}^if\\times {\\rm sym}^jg}(n)|^{2\\varphi}, |\\lambda_{{\\rm sym}^if\\times {\\rm sym}^jg}(n+h)|^{2\\varphi} \\bigr\\}, $$</span></div></div><p>\n where <span>\\(\\varphi>0\\)</span> and <i>h</i> is a fixed positive integer.</p></div>","PeriodicalId":50894,"journal":{"name":"Acta Mathematica Hungarica","volume":"170 2","pages":"524 - 550"},"PeriodicalIF":0.6000,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the asymptotics of coefficients of Rankin–Selberg L-functions\",\"authors\":\"H. Lao, H. Zhu\",\"doi\":\"10.1007/s10474-023-01357-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <i>f</i> and <i>g</i> be two different holomorphic cusp froms or Maass cusp forms for the full modular group <span>\\\\(SL(2,\\\\mathbb{Z})\\\\)</span>. We are interested in coefficients of Rankin–Selberg <i>L</i>-functions, and establish some bounds for </p><div><div><span>$$\\\\begin{aligned}\\\\sum_{n\\\\leq x} \\\\lambda_{{\\\\rm sym}^if\\\\times {\\\\rm sym}^jg}(n),\\\\quad\\n\\\\sum_{n\\\\leq x}\\\\lambda_f(n^i)\\\\lambda_g(n^j),\\n\\\\\\\\sum_{n\\\\leq x} |\\\\lambda_{{\\\\rm sym}^if\\\\times {\\\\rm sym}^jg}(n)|, \\\\quad \\n\\\\sum_{n\\\\leq x}|\\\\lambda_f(n^i)\\\\lambda_g(n^j)|,\\n \\\\end{aligned}$$</span></div></div><p>\\n and </p><div><div><span>$$\\\\sum _{n\\\\leq x} \\\\max \\\\bigl\\\\{|\\\\lambda_{{\\\\rm sym}^if\\\\times {\\\\rm sym}^jg}(n)|^{2\\\\varphi}, |\\\\lambda_{{\\\\rm sym}^if\\\\times {\\\\rm sym}^jg}(n+h)|^{2\\\\varphi} \\\\bigr\\\\}, $$</span></div></div><p>\\n where <span>\\\\(\\\\varphi>0\\\\)</span> and <i>h</i> is a fixed positive integer.</p></div>\",\"PeriodicalId\":50894,\"journal\":{\"name\":\"Acta Mathematica Hungarica\",\"volume\":\"170 2\",\"pages\":\"524 - 550\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Hungarica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10474-023-01357-z\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Hungarica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10474-023-01357-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
On the asymptotics of coefficients of Rankin–Selberg L-functions
Let f and g be two different holomorphic cusp froms or Maass cusp forms for the full modular group \(SL(2,\mathbb{Z})\). We are interested in coefficients of Rankin–Selberg L-functions, and establish some bounds for
期刊介绍:
Acta Mathematica Hungarica is devoted to publishing research articles of top quality in all areas of pure and applied mathematics as well as in theoretical computer science. The journal is published yearly in three volumes (two issues per volume, in total 6 issues) in both print and electronic formats. Acta Mathematica Hungarica (formerly Acta Mathematica Academiae Scientiarum Hungaricae) was founded in 1950 by the Hungarian Academy of Sciences.