{"title":"关于Rankin-Selberg l -函数系数的渐近性","authors":"H. Lao, H. Zhu","doi":"10.1007/s10474-023-01357-z","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>f</i> and <i>g</i> be two different holomorphic cusp froms or Maass cusp forms for the full modular group <span>\\(SL(2,\\mathbb{Z})\\)</span>. We are interested in coefficients of Rankin–Selberg <i>L</i>-functions, and establish some bounds for </p><div><div><span>$$\\begin{aligned}\\sum_{n\\leq x} \\lambda_{{\\rm sym}^if\\times {\\rm sym}^jg}(n),\\quad\n\\sum_{n\\leq x}\\lambda_f(n^i)\\lambda_g(n^j),\n\\\\sum_{n\\leq x} |\\lambda_{{\\rm sym}^if\\times {\\rm sym}^jg}(n)|, \\quad \n\\sum_{n\\leq x}|\\lambda_f(n^i)\\lambda_g(n^j)|,\n \\end{aligned}$$</span></div></div><p>\n and </p><div><div><span>$$\\sum _{n\\leq x} \\max \\bigl\\{|\\lambda_{{\\rm sym}^if\\times {\\rm sym}^jg}(n)|^{2\\varphi}, |\\lambda_{{\\rm sym}^if\\times {\\rm sym}^jg}(n+h)|^{2\\varphi} \\bigr\\}, $$</span></div></div><p>\n where <span>\\(\\varphi>0\\)</span> and <i>h</i> is a fixed positive integer.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the asymptotics of coefficients of Rankin–Selberg L-functions\",\"authors\":\"H. Lao, H. Zhu\",\"doi\":\"10.1007/s10474-023-01357-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <i>f</i> and <i>g</i> be two different holomorphic cusp froms or Maass cusp forms for the full modular group <span>\\\\(SL(2,\\\\mathbb{Z})\\\\)</span>. We are interested in coefficients of Rankin–Selberg <i>L</i>-functions, and establish some bounds for </p><div><div><span>$$\\\\begin{aligned}\\\\sum_{n\\\\leq x} \\\\lambda_{{\\\\rm sym}^if\\\\times {\\\\rm sym}^jg}(n),\\\\quad\\n\\\\sum_{n\\\\leq x}\\\\lambda_f(n^i)\\\\lambda_g(n^j),\\n\\\\\\\\sum_{n\\\\leq x} |\\\\lambda_{{\\\\rm sym}^if\\\\times {\\\\rm sym}^jg}(n)|, \\\\quad \\n\\\\sum_{n\\\\leq x}|\\\\lambda_f(n^i)\\\\lambda_g(n^j)|,\\n \\\\end{aligned}$$</span></div></div><p>\\n and </p><div><div><span>$$\\\\sum _{n\\\\leq x} \\\\max \\\\bigl\\\\{|\\\\lambda_{{\\\\rm sym}^if\\\\times {\\\\rm sym}^jg}(n)|^{2\\\\varphi}, |\\\\lambda_{{\\\\rm sym}^if\\\\times {\\\\rm sym}^jg}(n+h)|^{2\\\\varphi} \\\\bigr\\\\}, $$</span></div></div><p>\\n where <span>\\\\(\\\\varphi>0\\\\)</span> and <i>h</i> is a fixed positive integer.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10474-023-01357-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10474-023-01357-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the asymptotics of coefficients of Rankin–Selberg L-functions
Let f and g be two different holomorphic cusp froms or Maass cusp forms for the full modular group \(SL(2,\mathbb{Z})\). We are interested in coefficients of Rankin–Selberg L-functions, and establish some bounds for