关于Rankin-Selberg l -函数系数的渐近性

Pub Date : 2023-09-06 DOI:10.1007/s10474-023-01357-z
H. Lao, H. Zhu
{"title":"关于Rankin-Selberg l -函数系数的渐近性","authors":"H. Lao,&nbsp;H. Zhu","doi":"10.1007/s10474-023-01357-z","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>f</i> and <i>g</i> be two different holomorphic cusp froms or Maass cusp forms for the full modular group <span>\\(SL(2,\\mathbb{Z})\\)</span>. We are interested in coefficients of Rankin–Selberg <i>L</i>-functions, and establish some bounds for </p><div><div><span>$$\\begin{aligned}\\sum_{n\\leq x} \\lambda_{{\\rm sym}^if\\times {\\rm sym}^jg}(n),\\quad\n\\sum_{n\\leq x}\\lambda_f(n^i)\\lambda_g(n^j),\n\\\\sum_{n\\leq x} |\\lambda_{{\\rm sym}^if\\times {\\rm sym}^jg}(n)|, \\quad \n\\sum_{n\\leq x}|\\lambda_f(n^i)\\lambda_g(n^j)|,\n \\end{aligned}$$</span></div></div><p>\n and </p><div><div><span>$$\\sum _{n\\leq x} \\max \\bigl\\{|\\lambda_{{\\rm sym}^if\\times {\\rm sym}^jg}(n)|^{2\\varphi}, |\\lambda_{{\\rm sym}^if\\times {\\rm sym}^jg}(n+h)|^{2\\varphi} \\bigr\\}, $$</span></div></div><p>\n where <span>\\(\\varphi&gt;0\\)</span> and <i>h</i> is a fixed positive integer.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the asymptotics of coefficients of Rankin–Selberg L-functions\",\"authors\":\"H. Lao,&nbsp;H. Zhu\",\"doi\":\"10.1007/s10474-023-01357-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <i>f</i> and <i>g</i> be two different holomorphic cusp froms or Maass cusp forms for the full modular group <span>\\\\(SL(2,\\\\mathbb{Z})\\\\)</span>. We are interested in coefficients of Rankin–Selberg <i>L</i>-functions, and establish some bounds for </p><div><div><span>$$\\\\begin{aligned}\\\\sum_{n\\\\leq x} \\\\lambda_{{\\\\rm sym}^if\\\\times {\\\\rm sym}^jg}(n),\\\\quad\\n\\\\sum_{n\\\\leq x}\\\\lambda_f(n^i)\\\\lambda_g(n^j),\\n\\\\\\\\sum_{n\\\\leq x} |\\\\lambda_{{\\\\rm sym}^if\\\\times {\\\\rm sym}^jg}(n)|, \\\\quad \\n\\\\sum_{n\\\\leq x}|\\\\lambda_f(n^i)\\\\lambda_g(n^j)|,\\n \\\\end{aligned}$$</span></div></div><p>\\n and </p><div><div><span>$$\\\\sum _{n\\\\leq x} \\\\max \\\\bigl\\\\{|\\\\lambda_{{\\\\rm sym}^if\\\\times {\\\\rm sym}^jg}(n)|^{2\\\\varphi}, |\\\\lambda_{{\\\\rm sym}^if\\\\times {\\\\rm sym}^jg}(n+h)|^{2\\\\varphi} \\\\bigr\\\\}, $$</span></div></div><p>\\n where <span>\\\\(\\\\varphi&gt;0\\\\)</span> and <i>h</i> is a fixed positive integer.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10474-023-01357-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10474-023-01357-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设f和g是满模群\(SL(2,\mathbb{Z})\)的两个不同的全纯顶点形式或质量顶点形式。我们对Rankin-Selberg l -函数的系数感兴趣,并建立$$\begin{aligned}\sum_{n\leq x} \lambda_{{\rm sym}^if\times {\rm sym}^jg}(n),\quad\sum_{n\leq x}\lambda_f(n^i)\lambda_g(n^j),\\sum_{n\leq x} |\lambda_{{\rm sym}^if\times {\rm sym}^jg}(n)|, \quad \sum_{n\leq x}|\lambda_f(n^i)\lambda_g(n^j)|, \end{aligned}$$和$$\sum _{n\leq x} \max \bigl\{|\lambda_{{\rm sym}^if\times {\rm sym}^jg}(n)|^{2\varphi}, |\lambda_{{\rm sym}^if\times {\rm sym}^jg}(n+h)|^{2\varphi} \bigr\}, $$的一些边界,其中\(\varphi>0\)和h是一个固定的正整数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the asymptotics of coefficients of Rankin–Selberg L-functions

Let f and g be two different holomorphic cusp froms or Maass cusp forms for the full modular group \(SL(2,\mathbb{Z})\). We are interested in coefficients of Rankin–Selberg L-functions, and establish some bounds for

$$\begin{aligned}\sum_{n\leq x} \lambda_{{\rm sym}^if\times {\rm sym}^jg}(n),\quad \sum_{n\leq x}\lambda_f(n^i)\lambda_g(n^j), \\sum_{n\leq x} |\lambda_{{\rm sym}^if\times {\rm sym}^jg}(n)|, \quad \sum_{n\leq x}|\lambda_f(n^i)\lambda_g(n^j)|, \end{aligned}$$

and

$$\sum _{n\leq x} \max \bigl\{|\lambda_{{\rm sym}^if\times {\rm sym}^jg}(n)|^{2\varphi}, |\lambda_{{\rm sym}^if\times {\rm sym}^jg}(n+h)|^{2\varphi} \bigr\}, $$

where \(\varphi>0\) and h is a fixed positive integer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信