Thomas Uriot, Dario Izzo, Luís F. Simões, Rasit Abay, Nils Einecke, Sven Rebhan, Jose Martinez-Heras, Francesca Letizia, Jan Siminski, Klaus Merz
{"title":"航天器避碰挑战:机器学习竞赛的设计和结果","authors":"Thomas Uriot, Dario Izzo, Luís F. Simões, Rasit Abay, Nils Einecke, Sven Rebhan, Jose Martinez-Heras, Francesca Letizia, Jan Siminski, Klaus Merz","doi":"10.1007/s42064-021-0101-5","DOIUrl":null,"url":null,"abstract":"<div><p>Spacecraft collision avoidance procedures have become an essential part of satellite operations. Complex and constantly updated estimates of the collision risk between orbiting objects inform various operators who can then plan risk mitigation measures. Such measures can be aided by the development of suitable machine learning (ML) models that predict, for example, the evolution of the collision risk over time. In October 2019, in an attempt to study this opportunity, the European Space Agency released a large curated dataset containing information about close approach events in the form of conjunction data messages (CDMs), which was collected from 2015 to 2019. This dataset was used in the Spacecraft Collision Avoidance Challenge, which was an ML competition where participants had to build models to predict the final collision risk between orbiting objects. This paper describes the design and results of the competition and discusses the challenges and lessons learned when applying ML methods to this problem domain.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":52291,"journal":{"name":"Astrodynamics","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2021-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s42064-021-0101-5","citationCount":"23","resultStr":"{\"title\":\"Spacecraft collision avoidance challenge: Design and results of a machine learning competition\",\"authors\":\"Thomas Uriot, Dario Izzo, Luís F. Simões, Rasit Abay, Nils Einecke, Sven Rebhan, Jose Martinez-Heras, Francesca Letizia, Jan Siminski, Klaus Merz\",\"doi\":\"10.1007/s42064-021-0101-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Spacecraft collision avoidance procedures have become an essential part of satellite operations. Complex and constantly updated estimates of the collision risk between orbiting objects inform various operators who can then plan risk mitigation measures. Such measures can be aided by the development of suitable machine learning (ML) models that predict, for example, the evolution of the collision risk over time. In October 2019, in an attempt to study this opportunity, the European Space Agency released a large curated dataset containing information about close approach events in the form of conjunction data messages (CDMs), which was collected from 2015 to 2019. This dataset was used in the Spacecraft Collision Avoidance Challenge, which was an ML competition where participants had to build models to predict the final collision risk between orbiting objects. This paper describes the design and results of the competition and discusses the challenges and lessons learned when applying ML methods to this problem domain.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":52291,\"journal\":{\"name\":\"Astrodynamics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2021-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s42064-021-0101-5\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astrodynamics\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42064-021-0101-5\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrodynamics","FirstCategoryId":"1087","ListUrlMain":"https://link.springer.com/article/10.1007/s42064-021-0101-5","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Spacecraft collision avoidance challenge: Design and results of a machine learning competition
Spacecraft collision avoidance procedures have become an essential part of satellite operations. Complex and constantly updated estimates of the collision risk between orbiting objects inform various operators who can then plan risk mitigation measures. Such measures can be aided by the development of suitable machine learning (ML) models that predict, for example, the evolution of the collision risk over time. In October 2019, in an attempt to study this opportunity, the European Space Agency released a large curated dataset containing information about close approach events in the form of conjunction data messages (CDMs), which was collected from 2015 to 2019. This dataset was used in the Spacecraft Collision Avoidance Challenge, which was an ML competition where participants had to build models to predict the final collision risk between orbiting objects. This paper describes the design and results of the competition and discusses the challenges and lessons learned when applying ML methods to this problem domain.
期刊介绍:
Astrodynamics is a peer-reviewed international journal that is co-published by Tsinghua University Press and Springer. The high-quality peer-reviewed articles of original research, comprehensive review, mission accomplishments, and technical comments in all fields of astrodynamics will be given priorities for publication. In addition, related research in astronomy and astrophysics that takes advantages of the analytical and computational methods of astrodynamics is also welcome. Astrodynamics would like to invite all of the astrodynamics specialists to submit their research articles to this new journal. Currently, the scope of the journal includes, but is not limited to:Fundamental orbital dynamicsSpacecraft trajectory optimization and space mission designOrbit determination and prediction, autonomous orbital navigationSpacecraft attitude determination, control, and dynamicsGuidance and control of spacecraft and space robotsSpacecraft constellation design and formation flyingModelling, analysis, and optimization of innovative space systemsNovel concepts for space engineering and interdisciplinary applicationsThe effort of the Editorial Board will be ensuring the journal to publish novel researches that advance the field, and will provide authors with a productive, fair, and timely review experience. It is our sincere hope that all researchers in the field of astrodynamics will eagerly access this journal, Astrodynamics, as either authors or readers, making it an illustrious journal that will shape our future space explorations and discoveries.