Xiangyu Li, Daniel J. Scheeres, Dong Qiao, Zixuan Liu
{"title":"小行星469219 2016 HO3的地球物理和轨道环境","authors":"Xiangyu Li, Daniel J. Scheeres, Dong Qiao, Zixuan Liu","doi":"10.1007/s42064-022-0131-7","DOIUrl":null,"url":null,"abstract":"<div><p>Asteroid 469219 Kamo’oalewa, also named 2016 HO3, is a small-size fast-rotating near-Earth asteroid, which is a potential target for future explorations. Owing to its weak gravity and fast spin rate, the dynamics on the surface or in the vicinity of 2016 HO3 are significantly different from those of planets or other small bodies explored in previous missions. In this study, the geophysical and orbital environments of 2016 HO3 were investigated to facilitate a potential mission design. First, the geometric and geopotential topographies of 2016 HO3 were examined using different shape models. The lift-off and escape conditions on its fast-rotating surface were investigated. Then, the periodic orbits around 2016 HO3 were studied in the asteroid-fixed frame and the Sun—asteroid frame considering the solar radiation pressure. The stable regions of the terminator orbits were discussed using different parameters. Finally, the influence of the nonspherical shape on the terminator orbits was examined. The precise terminator orbits around a real shape model of 2016 HO3 were obtained and verified in the high-fidelity model. This study shows that the polar region of 2016 HO3 is the primary region for landing or sampling, and the terminator orbits are well suited for global mapping and measurements of 2016 HO3. The analysis and methods can also serve as references for the exploration of other small fast-rotating bodies.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":52291,"journal":{"name":"Astrodynamics","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2022-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Geophysical and orbital environments of asteroid 469219 2016 HO3\",\"authors\":\"Xiangyu Li, Daniel J. Scheeres, Dong Qiao, Zixuan Liu\",\"doi\":\"10.1007/s42064-022-0131-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Asteroid 469219 Kamo’oalewa, also named 2016 HO3, is a small-size fast-rotating near-Earth asteroid, which is a potential target for future explorations. Owing to its weak gravity and fast spin rate, the dynamics on the surface or in the vicinity of 2016 HO3 are significantly different from those of planets or other small bodies explored in previous missions. In this study, the geophysical and orbital environments of 2016 HO3 were investigated to facilitate a potential mission design. First, the geometric and geopotential topographies of 2016 HO3 were examined using different shape models. The lift-off and escape conditions on its fast-rotating surface were investigated. Then, the periodic orbits around 2016 HO3 were studied in the asteroid-fixed frame and the Sun—asteroid frame considering the solar radiation pressure. The stable regions of the terminator orbits were discussed using different parameters. Finally, the influence of the nonspherical shape on the terminator orbits was examined. The precise terminator orbits around a real shape model of 2016 HO3 were obtained and verified in the high-fidelity model. This study shows that the polar region of 2016 HO3 is the primary region for landing or sampling, and the terminator orbits are well suited for global mapping and measurements of 2016 HO3. The analysis and methods can also serve as references for the exploration of other small fast-rotating bodies.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":52291,\"journal\":{\"name\":\"Astrodynamics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2022-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astrodynamics\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42064-022-0131-7\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrodynamics","FirstCategoryId":"1087","ListUrlMain":"https://link.springer.com/article/10.1007/s42064-022-0131-7","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Geophysical and orbital environments of asteroid 469219 2016 HO3
Asteroid 469219 Kamo’oalewa, also named 2016 HO3, is a small-size fast-rotating near-Earth asteroid, which is a potential target for future explorations. Owing to its weak gravity and fast spin rate, the dynamics on the surface or in the vicinity of 2016 HO3 are significantly different from those of planets or other small bodies explored in previous missions. In this study, the geophysical and orbital environments of 2016 HO3 were investigated to facilitate a potential mission design. First, the geometric and geopotential topographies of 2016 HO3 were examined using different shape models. The lift-off and escape conditions on its fast-rotating surface were investigated. Then, the periodic orbits around 2016 HO3 were studied in the asteroid-fixed frame and the Sun—asteroid frame considering the solar radiation pressure. The stable regions of the terminator orbits were discussed using different parameters. Finally, the influence of the nonspherical shape on the terminator orbits was examined. The precise terminator orbits around a real shape model of 2016 HO3 were obtained and verified in the high-fidelity model. This study shows that the polar region of 2016 HO3 is the primary region for landing or sampling, and the terminator orbits are well suited for global mapping and measurements of 2016 HO3. The analysis and methods can also serve as references for the exploration of other small fast-rotating bodies.
期刊介绍:
Astrodynamics is a peer-reviewed international journal that is co-published by Tsinghua University Press and Springer. The high-quality peer-reviewed articles of original research, comprehensive review, mission accomplishments, and technical comments in all fields of astrodynamics will be given priorities for publication. In addition, related research in astronomy and astrophysics that takes advantages of the analytical and computational methods of astrodynamics is also welcome. Astrodynamics would like to invite all of the astrodynamics specialists to submit their research articles to this new journal. Currently, the scope of the journal includes, but is not limited to:Fundamental orbital dynamicsSpacecraft trajectory optimization and space mission designOrbit determination and prediction, autonomous orbital navigationSpacecraft attitude determination, control, and dynamicsGuidance and control of spacecraft and space robotsSpacecraft constellation design and formation flyingModelling, analysis, and optimization of innovative space systemsNovel concepts for space engineering and interdisciplinary applicationsThe effort of the Editorial Board will be ensuring the journal to publish novel researches that advance the field, and will provide authors with a productive, fair, and timely review experience. It is our sincere hope that all researchers in the field of astrodynamics will eagerly access this journal, Astrodynamics, as either authors or readers, making it an illustrious journal that will shape our future space explorations and discoveries.