大型列联表的稀疏对应分析

IF 1.4 4区 计算机科学 Q2 STATISTICS & PROBABILITY
Ruiping Liu, Ndeye Niang, Gilbert Saporta, Huiwen Wang
{"title":"大型列联表的稀疏对应分析","authors":"Ruiping Liu,&nbsp;Ndeye Niang,&nbsp;Gilbert Saporta,&nbsp;Huiwen Wang","doi":"10.1007/s11634-022-00531-5","DOIUrl":null,"url":null,"abstract":"<div><p>We propose sparse variants of correspondence analysis (CA) for large contingency tables like documents-terms matrices used in text mining. By seeking to obtain many zero coefficients, sparse CA remedies to the difficulty of interpreting CA results when the size of the table is large. Since CA is a double weighted PCA (for rows and columns) or a weighted generalized SVD, we adapt known sparse versions of these methods with specific developments to obtain orthogonal solutions and to tune the sparseness parameters. We distinguish two cases depending on whether sparseness is asked for both rows and columns, or only for one set.</p></div>","PeriodicalId":49270,"journal":{"name":"Advances in Data Analysis and Classification","volume":"17 4","pages":"1037 - 1056"},"PeriodicalIF":1.4000,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Sparse correspondence analysis for large contingency tables\",\"authors\":\"Ruiping Liu,&nbsp;Ndeye Niang,&nbsp;Gilbert Saporta,&nbsp;Huiwen Wang\",\"doi\":\"10.1007/s11634-022-00531-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We propose sparse variants of correspondence analysis (CA) for large contingency tables like documents-terms matrices used in text mining. By seeking to obtain many zero coefficients, sparse CA remedies to the difficulty of interpreting CA results when the size of the table is large. Since CA is a double weighted PCA (for rows and columns) or a weighted generalized SVD, we adapt known sparse versions of these methods with specific developments to obtain orthogonal solutions and to tune the sparseness parameters. We distinguish two cases depending on whether sparseness is asked for both rows and columns, or only for one set.</p></div>\",\"PeriodicalId\":49270,\"journal\":{\"name\":\"Advances in Data Analysis and Classification\",\"volume\":\"17 4\",\"pages\":\"1037 - 1056\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Data Analysis and Classification\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11634-022-00531-5\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Data Analysis and Classification","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s11634-022-00531-5","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2

摘要

我们提出了对应分析(CA)的稀疏变体,用于大型列联表,如文本挖掘中使用的文档术语矩阵。通过寻求获得许多零系数,稀疏CA解决了当表的大小很大时解释CA结果的困难。由于CA是双加权PCA(用于行和列)或加权广义SVD,因此我们对这些方法的已知稀疏版本进行了特定的改进,以获得正交解并调整稀疏性参数。我们区分两种情况取决于是否对行和列都要求稀疏性,还是只对一个集合要求稀疏性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Sparse correspondence analysis for large contingency tables

Sparse correspondence analysis for large contingency tables

We propose sparse variants of correspondence analysis (CA) for large contingency tables like documents-terms matrices used in text mining. By seeking to obtain many zero coefficients, sparse CA remedies to the difficulty of interpreting CA results when the size of the table is large. Since CA is a double weighted PCA (for rows and columns) or a weighted generalized SVD, we adapt known sparse versions of these methods with specific developments to obtain orthogonal solutions and to tune the sparseness parameters. We distinguish two cases depending on whether sparseness is asked for both rows and columns, or only for one set.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
6.20%
发文量
45
审稿时长
>12 weeks
期刊介绍: The international journal Advances in Data Analysis and Classification (ADAC) is designed as a forum for high standard publications on research and applications concerning the extraction of knowable aspects from many types of data. It publishes articles on such topics as structural, quantitative, or statistical approaches for the analysis of data; advances in classification, clustering, and pattern recognition methods; strategies for modeling complex data and mining large data sets; methods for the extraction of knowledge from data, and applications of advanced methods in specific domains of practice. Articles illustrate how new domain-specific knowledge can be made available from data by skillful use of data analysis methods. The journal also publishes survey papers that outline, and illuminate the basic ideas and techniques of special approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信