{"title":"开环陀螺弹性多体动力学的递推公式","authors":"Shiyuan Jia, Yinghong Jia","doi":"10.1007/s42064-022-0137-1","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, a general recursive formulation of equations of motion is presented for open-loop gyroelastic multibody systems. The gyroelastic multibody system is defined as a multibody system with gyroelastic bodies, whereas a gyroelastic body is composed of a flexible body with a cluster of double-gimbal variable-speed control moment gyroscopes (DGVs). First, the motion equations of a single gyroelastic body are derived using Kane’s method. The influence of DGVs on the static moments, modal momentum coefficients, moments of inertia, modal angular momentum coefficients, and modal mass matrix for a flexible body are considered. The interactions between the DGVs and the flexibilities of the structures are captured. The recursive kinematic relations for a multibody system with different connections are then obtained from a flexible–flexible connection using a transformation matrix. The different connections contain a flexible–flexible connection, which represents a flexible body connecting to another flexible body, flexible–rigid and rigid–rigid connections. The recursive gyroelastic multibody dynamics are obtained by analyzing the kinematics of a multibody system and the dynamics of a single gyroelastic body. Numerical simulations are presented to verify the accuracy and efficiency of the proposed approach by comparing it with a direct formulation based on Kane’s method.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":52291,"journal":{"name":"Astrodynamics","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A recursive formulation for open-loop gyroelastic multibody dynamics\",\"authors\":\"Shiyuan Jia, Yinghong Jia\",\"doi\":\"10.1007/s42064-022-0137-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, a general recursive formulation of equations of motion is presented for open-loop gyroelastic multibody systems. The gyroelastic multibody system is defined as a multibody system with gyroelastic bodies, whereas a gyroelastic body is composed of a flexible body with a cluster of double-gimbal variable-speed control moment gyroscopes (DGVs). First, the motion equations of a single gyroelastic body are derived using Kane’s method. The influence of DGVs on the static moments, modal momentum coefficients, moments of inertia, modal angular momentum coefficients, and modal mass matrix for a flexible body are considered. The interactions between the DGVs and the flexibilities of the structures are captured. The recursive kinematic relations for a multibody system with different connections are then obtained from a flexible–flexible connection using a transformation matrix. The different connections contain a flexible–flexible connection, which represents a flexible body connecting to another flexible body, flexible–rigid and rigid–rigid connections. The recursive gyroelastic multibody dynamics are obtained by analyzing the kinematics of a multibody system and the dynamics of a single gyroelastic body. Numerical simulations are presented to verify the accuracy and efficiency of the proposed approach by comparing it with a direct formulation based on Kane’s method.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":52291,\"journal\":{\"name\":\"Astrodynamics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astrodynamics\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42064-022-0137-1\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrodynamics","FirstCategoryId":"1087","ListUrlMain":"https://link.springer.com/article/10.1007/s42064-022-0137-1","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
A recursive formulation for open-loop gyroelastic multibody dynamics
In this paper, a general recursive formulation of equations of motion is presented for open-loop gyroelastic multibody systems. The gyroelastic multibody system is defined as a multibody system with gyroelastic bodies, whereas a gyroelastic body is composed of a flexible body with a cluster of double-gimbal variable-speed control moment gyroscopes (DGVs). First, the motion equations of a single gyroelastic body are derived using Kane’s method. The influence of DGVs on the static moments, modal momentum coefficients, moments of inertia, modal angular momentum coefficients, and modal mass matrix for a flexible body are considered. The interactions between the DGVs and the flexibilities of the structures are captured. The recursive kinematic relations for a multibody system with different connections are then obtained from a flexible–flexible connection using a transformation matrix. The different connections contain a flexible–flexible connection, which represents a flexible body connecting to another flexible body, flexible–rigid and rigid–rigid connections. The recursive gyroelastic multibody dynamics are obtained by analyzing the kinematics of a multibody system and the dynamics of a single gyroelastic body. Numerical simulations are presented to verify the accuracy and efficiency of the proposed approach by comparing it with a direct formulation based on Kane’s method.
期刊介绍:
Astrodynamics is a peer-reviewed international journal that is co-published by Tsinghua University Press and Springer. The high-quality peer-reviewed articles of original research, comprehensive review, mission accomplishments, and technical comments in all fields of astrodynamics will be given priorities for publication. In addition, related research in astronomy and astrophysics that takes advantages of the analytical and computational methods of astrodynamics is also welcome. Astrodynamics would like to invite all of the astrodynamics specialists to submit their research articles to this new journal. Currently, the scope of the journal includes, but is not limited to:Fundamental orbital dynamicsSpacecraft trajectory optimization and space mission designOrbit determination and prediction, autonomous orbital navigationSpacecraft attitude determination, control, and dynamicsGuidance and control of spacecraft and space robotsSpacecraft constellation design and formation flyingModelling, analysis, and optimization of innovative space systemsNovel concepts for space engineering and interdisciplinary applicationsThe effort of the Editorial Board will be ensuring the journal to publish novel researches that advance the field, and will provide authors with a productive, fair, and timely review experience. It is our sincere hope that all researchers in the field of astrodynamics will eagerly access this journal, Astrodynamics, as either authors or readers, making it an illustrious journal that will shape our future space explorations and discoveries.