金属半导体的第一性原理研究MoSH@MoS2范德华异质结构

IF 4.6 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Son-Tung Nguyen, Cuong Q. Nguyen, Nguyen N. Hieu, Huynh V. Phuc and Chuong V. Nguyen
{"title":"金属半导体的第一性原理研究MoSH@MoS2范德华异质结构","authors":"Son-Tung Nguyen, Cuong Q. Nguyen, Nguyen N. Hieu, Huynh V. Phuc and Chuong V. Nguyen","doi":"10.1039/D3NA00465A","DOIUrl":null,"url":null,"abstract":"<p >Two-dimensional (2D) metal–semiconductor heterostructures play a critical role in the development of modern electronics technology, offering a platform for tailored electronic behavior and enhanced device performance. Herein, we construct a novel 2D metal–semiconductor MoSH@MoS<small><sub>2</sub></small> heterostructure and investigate its structures, electronic properties and contact characteristics using first-principles investigations. We find that the MoSH@MoS<small><sub>2</sub></small> heterostructure exhibits a p-type Schottky contact, where the specific Schottky barrier height varies depending on the stacking configurations employed. Furthermore, the MoSH@MoS<small><sub>2</sub></small> heterostructures possess low tunneling probabilities, indicating a relatively low electron transparency across all the patterns of the MoSH@MoS<small><sub>2</sub></small> heterostructures. Interestingly, by modulating the electric field, it is possible to modify the Schottky barriers and achieve a transformation from a p-type Schottky contact into an n-type Schottky contact. Our findings pave the way for the development of advanced electronics technology based on metal–semiconductor MoSH@MoS<small><sub>2</sub></small> heterostructures with enhanced tunability and versatility.</p>","PeriodicalId":18806,"journal":{"name":"Nanoscale Advances","volume":" 18","pages":" 4979-4985"},"PeriodicalIF":4.6000,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2023/na/d3na00465a?page=search","citationCount":"0","resultStr":"{\"title\":\"First-principles investigations of metal–semiconductor MoSH@MoS2 van der Waals heterostructures\",\"authors\":\"Son-Tung Nguyen, Cuong Q. Nguyen, Nguyen N. Hieu, Huynh V. Phuc and Chuong V. Nguyen\",\"doi\":\"10.1039/D3NA00465A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Two-dimensional (2D) metal–semiconductor heterostructures play a critical role in the development of modern electronics technology, offering a platform for tailored electronic behavior and enhanced device performance. Herein, we construct a novel 2D metal–semiconductor MoSH@MoS<small><sub>2</sub></small> heterostructure and investigate its structures, electronic properties and contact characteristics using first-principles investigations. We find that the MoSH@MoS<small><sub>2</sub></small> heterostructure exhibits a p-type Schottky contact, where the specific Schottky barrier height varies depending on the stacking configurations employed. Furthermore, the MoSH@MoS<small><sub>2</sub></small> heterostructures possess low tunneling probabilities, indicating a relatively low electron transparency across all the patterns of the MoSH@MoS<small><sub>2</sub></small> heterostructures. Interestingly, by modulating the electric field, it is possible to modify the Schottky barriers and achieve a transformation from a p-type Schottky contact into an n-type Schottky contact. Our findings pave the way for the development of advanced electronics technology based on metal–semiconductor MoSH@MoS<small><sub>2</sub></small> heterostructures with enhanced tunability and versatility.</p>\",\"PeriodicalId\":18806,\"journal\":{\"name\":\"Nanoscale Advances\",\"volume\":\" 18\",\"pages\":\" 4979-4985\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2023/na/d3na00465a?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale Advances\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2023/na/d3na00465a\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Advances","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/na/d3na00465a","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

二维(2D)金属半导体异质结构在现代电子技术的发展中发挥着关键作用,为定制电子行为和增强器件性能提供了平台。本文构建了一种新型二维金属半导体MoSH@MoS2异质结构,并利用第一性原理研究了其结构、电子特性和接触特性。我们发现MoSH@MoS2异质结构表现出p型肖特基接触,其中特定的肖特基势垒高度取决于所采用的堆叠构型。此外,MoSH@MoS2异质结构具有低隧穿概率,表明在MoSH@MoS2异质结构的所有模式中电子透明度相对较低。有趣的是,通过调制电场,可以改变肖特基势垒,实现从p型肖特基接触到n型肖特基接触的转变。我们的发现为基于金属半导体MoSH@MoS2异质结构的先进电子技术的发展铺平了道路,具有增强的可调性和多功能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

First-principles investigations of metal–semiconductor MoSH@MoS2 van der Waals heterostructures

First-principles investigations of metal–semiconductor MoSH@MoS2 van der Waals heterostructures

Two-dimensional (2D) metal–semiconductor heterostructures play a critical role in the development of modern electronics technology, offering a platform for tailored electronic behavior and enhanced device performance. Herein, we construct a novel 2D metal–semiconductor MoSH@MoS2 heterostructure and investigate its structures, electronic properties and contact characteristics using first-principles investigations. We find that the MoSH@MoS2 heterostructure exhibits a p-type Schottky contact, where the specific Schottky barrier height varies depending on the stacking configurations employed. Furthermore, the MoSH@MoS2 heterostructures possess low tunneling probabilities, indicating a relatively low electron transparency across all the patterns of the MoSH@MoS2 heterostructures. Interestingly, by modulating the electric field, it is possible to modify the Schottky barriers and achieve a transformation from a p-type Schottky contact into an n-type Schottky contact. Our findings pave the way for the development of advanced electronics technology based on metal–semiconductor MoSH@MoS2 heterostructures with enhanced tunability and versatility.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale Advances
Nanoscale Advances Multiple-
CiteScore
8.00
自引率
2.10%
发文量
461
审稿时长
9 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信