电催化用金属有机骨架(MOFs)的研究进展

Cha Li, Hao Zhang, Ming Liu, Fei-Fan Lang, Jiandong Pang and Xian-He Bu
{"title":"电催化用金属有机骨架(MOFs)的研究进展","authors":"Cha Li, Hao Zhang, Ming Liu, Fei-Fan Lang, Jiandong Pang and Xian-He Bu","doi":"10.1039/D2IM00063F","DOIUrl":null,"url":null,"abstract":"<p>Electrocatalytic technology opens a new path to solve the existing problems in fossil fuel consumption and environmental pollution as well as efficient energy use. Metal–organic frameworks (MOFs), a class of crystalline porous materials with high specific surface area, high porosity and customizable structures, have emerged as promising electrocatalysts. However, their inherently low electrical conductivity and stability greatly hinder their further applications. Therefore, strategies such as synthesizing two-dimensional conductive MOFs, designing unsaturated metal sites, and building MOF nanoarrays have been developed to enhance the conductivity and catalytic reaction transfer rates of MOFs, accompanied by the rational designs of MOFs for improving their stability. In this review, the applications of MOF-based electrocatalysts in the hydrogen evolution reaction (HER), hydrogen oxidation reaction (HOR), oxygen evolution reaction (OER), oxygen reduction reaction (ORR) and nitrogen reduction reaction (NRR) are presented in detail with the classification of monometallic MOFs, bimetallic MOFs, MOF-based composites and MOFs as supports. In addition, the relationship between the structure and performance is discussed through DFT calculations used in related work. Finally, future challenges and application prospects of MOFs in electrocatalysis are highlighted.</p><p>Keywords: Metal–organic frameworks; Electrocatalyst; Catalytic performance; Catalysis; Energy conversion.</p>","PeriodicalId":29808,"journal":{"name":"Industrial Chemistry & Materials","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2023/im/d2im00063f?page=search","citationCount":"12","resultStr":"{\"title\":\"Recent progress in metal–organic frameworks (MOFs) for electrocatalysis\",\"authors\":\"Cha Li, Hao Zhang, Ming Liu, Fei-Fan Lang, Jiandong Pang and Xian-He Bu\",\"doi\":\"10.1039/D2IM00063F\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Electrocatalytic technology opens a new path to solve the existing problems in fossil fuel consumption and environmental pollution as well as efficient energy use. Metal–organic frameworks (MOFs), a class of crystalline porous materials with high specific surface area, high porosity and customizable structures, have emerged as promising electrocatalysts. However, their inherently low electrical conductivity and stability greatly hinder their further applications. Therefore, strategies such as synthesizing two-dimensional conductive MOFs, designing unsaturated metal sites, and building MOF nanoarrays have been developed to enhance the conductivity and catalytic reaction transfer rates of MOFs, accompanied by the rational designs of MOFs for improving their stability. In this review, the applications of MOF-based electrocatalysts in the hydrogen evolution reaction (HER), hydrogen oxidation reaction (HOR), oxygen evolution reaction (OER), oxygen reduction reaction (ORR) and nitrogen reduction reaction (NRR) are presented in detail with the classification of monometallic MOFs, bimetallic MOFs, MOF-based composites and MOFs as supports. In addition, the relationship between the structure and performance is discussed through DFT calculations used in related work. Finally, future challenges and application prospects of MOFs in electrocatalysis are highlighted.</p><p>Keywords: Metal–organic frameworks; Electrocatalyst; Catalytic performance; Catalysis; Energy conversion.</p>\",\"PeriodicalId\":29808,\"journal\":{\"name\":\"Industrial Chemistry & Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2023/im/d2im00063f?page=search\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial Chemistry & Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2023/im/d2im00063f\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Chemistry & Materials","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/im/d2im00063f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

电催化技术为解决化石燃料消耗和环境污染问题以及能源的高效利用开辟了新的途径。金属有机骨架(mof)是一类具有高比表面积、高孔隙率和可定制结构的晶体多孔材料,是一种很有前途的电催化剂。然而,它们固有的低导电性和稳定性极大地阻碍了它们的进一步应用。因此,合成二维导电MOF、设计不饱和金属位点、构建MOF纳米阵列等策略被开发出来,以提高MOF的电导率和催化反应转移速率,同时合理设计MOF以提高其稳定性。综述了mof基电催化剂在析氢反应(HER)、氢氧化反应(HOR)、析氧反应(OER)、氧还原反应(ORR)和氮还原反应(NRR)中的应用,并将其分为单金属mof、双金属mof、mof基复合材料和作为载体的mof。此外,通过相关工作中使用的DFT计算,讨论了结构与性能之间的关系。最后,展望了MOFs在电催化领域的应用前景和面临的挑战。关键词:金属有机骨架;Electrocatalyst;催化性能;催化;能量转换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Recent progress in metal–organic frameworks (MOFs) for electrocatalysis

Recent progress in metal–organic frameworks (MOFs) for electrocatalysis

Electrocatalytic technology opens a new path to solve the existing problems in fossil fuel consumption and environmental pollution as well as efficient energy use. Metal–organic frameworks (MOFs), a class of crystalline porous materials with high specific surface area, high porosity and customizable structures, have emerged as promising electrocatalysts. However, their inherently low electrical conductivity and stability greatly hinder their further applications. Therefore, strategies such as synthesizing two-dimensional conductive MOFs, designing unsaturated metal sites, and building MOF nanoarrays have been developed to enhance the conductivity and catalytic reaction transfer rates of MOFs, accompanied by the rational designs of MOFs for improving their stability. In this review, the applications of MOF-based electrocatalysts in the hydrogen evolution reaction (HER), hydrogen oxidation reaction (HOR), oxygen evolution reaction (OER), oxygen reduction reaction (ORR) and nitrogen reduction reaction (NRR) are presented in detail with the classification of monometallic MOFs, bimetallic MOFs, MOF-based composites and MOFs as supports. In addition, the relationship between the structure and performance is discussed through DFT calculations used in related work. Finally, future challenges and application prospects of MOFs in electrocatalysis are highlighted.

Keywords: Metal–organic frameworks; Electrocatalyst; Catalytic performance; Catalysis; Energy conversion.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Industrial Chemistry & Materials
Industrial Chemistry & Materials chemistry, chemical engineering, functional materials, energy, etc.-
自引率
0.00%
发文量
0
期刊介绍: Industrial Chemistry & Materials (ICM) publishes significant innovative research and major technological breakthroughs in all aspects of industrial chemistry and materials, with a particular focus on the important innovation of low-carbon chemical industry, energy and functional materials. By bringing researchers, engineers, and policymakers into one place, research is inspired, challenges are solved and the applications of science and technology are accelerated. The global editorial and advisory board members are valued experts in the community. With their support, the rigorous editorial practices and dissemination ensures your research is accessible and discoverable on a global scale. Industrial Chemistry & Materials publishes: ● Communications ● Full papers ● Minireviews ● Reviews ● Perspectives ● Comments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信