代谢网络的有效动态模型

Michael Vilkhovoy;Mason Minot;Jeffrey D. Varner
{"title":"代谢网络的有效动态模型","authors":"Michael Vilkhovoy;Mason Minot;Jeffrey D. Varner","doi":"10.1109/LLS.2016.2644649","DOIUrl":null,"url":null,"abstract":"Mathematical models of biochemical networks are the useful tools to understand and ultimately predict how cells utilize nutrients to produce valuable products. Hybrid cybernetic models (HCMs) in combination with elementary modes (EMs) are a tool to model cellular metabolism. However, HCM is limited to reduced metabolic networks because of the computational burden of calculating EMs. In this letter, we develop the hybrid cybernetic modeling with flux balance analysis (HCM-FBA) technique, which uses flux balance solutions instead of EMs to dynamically model metabolism. We show that HCM-FBA has comparable performance to HCM for a proof of concept metabolic network and for a reduced anaerobic E. coli network. Next, HCM-FBA is applied to a larger metabolic network of aerobic E. coli metabolism, which was infeasible for HCM (29 FBA modes versus more than 153 000 EMs). The global sensitivity analysis further reduces the number of FBA modes required to describe the aerobic E. coli data, while maintaining model fit. Thus, HCM-FBA is a promising alternative to HCM for large networks, where the generation of EMs is infeasible.","PeriodicalId":87271,"journal":{"name":"IEEE life sciences letters","volume":"2 4","pages":"51-54"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/LLS.2016.2644649","citationCount":"0","resultStr":"{\"title\":\"Effective Dynamic Models of Metabolic Networks\",\"authors\":\"Michael Vilkhovoy;Mason Minot;Jeffrey D. Varner\",\"doi\":\"10.1109/LLS.2016.2644649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mathematical models of biochemical networks are the useful tools to understand and ultimately predict how cells utilize nutrients to produce valuable products. Hybrid cybernetic models (HCMs) in combination with elementary modes (EMs) are a tool to model cellular metabolism. However, HCM is limited to reduced metabolic networks because of the computational burden of calculating EMs. In this letter, we develop the hybrid cybernetic modeling with flux balance analysis (HCM-FBA) technique, which uses flux balance solutions instead of EMs to dynamically model metabolism. We show that HCM-FBA has comparable performance to HCM for a proof of concept metabolic network and for a reduced anaerobic E. coli network. Next, HCM-FBA is applied to a larger metabolic network of aerobic E. coli metabolism, which was infeasible for HCM (29 FBA modes versus more than 153 000 EMs). The global sensitivity analysis further reduces the number of FBA modes required to describe the aerobic E. coli data, while maintaining model fit. Thus, HCM-FBA is a promising alternative to HCM for large networks, where the generation of EMs is infeasible.\",\"PeriodicalId\":87271,\"journal\":{\"name\":\"IEEE life sciences letters\",\"volume\":\"2 4\",\"pages\":\"51-54\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/LLS.2016.2644649\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE life sciences letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/7797204/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE life sciences letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/7797204/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

生物化学网络的数学模型是理解和最终预测细胞如何利用营养物质产生有价值产品的有用工具。混合控制论模型(HCMs)与基本模型(EMs)相结合,是一种模拟细胞代谢的工具。然而,由于计算em的计算负担,HCM仅限于减少的代谢网络。在这封信中,我们开发了混合控制论建模与通量平衡分析(HCM-FBA)技术,它使用通量平衡解决方案而不是EMs来动态建模代谢。我们表明,HCM- fba在概念代谢网络和减少厌氧大肠杆菌网络方面具有与HCM相当的性能。接下来,HCM-FBA应用于需氧大肠杆菌代谢的更大代谢网络,这在HCM中是不可行的(29种FBA模式与超过153,000种EMs)。全局敏感性分析进一步减少了描述需氧大肠杆菌数据所需的FBA模式的数量,同时保持了模型拟合。因此,HCM- fba是大型网络中HCM的一种有希望的替代方案,在这些网络中,生成em是不可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effective Dynamic Models of Metabolic Networks
Mathematical models of biochemical networks are the useful tools to understand and ultimately predict how cells utilize nutrients to produce valuable products. Hybrid cybernetic models (HCMs) in combination with elementary modes (EMs) are a tool to model cellular metabolism. However, HCM is limited to reduced metabolic networks because of the computational burden of calculating EMs. In this letter, we develop the hybrid cybernetic modeling with flux balance analysis (HCM-FBA) technique, which uses flux balance solutions instead of EMs to dynamically model metabolism. We show that HCM-FBA has comparable performance to HCM for a proof of concept metabolic network and for a reduced anaerobic E. coli network. Next, HCM-FBA is applied to a larger metabolic network of aerobic E. coli metabolism, which was infeasible for HCM (29 FBA modes versus more than 153 000 EMs). The global sensitivity analysis further reduces the number of FBA modes required to describe the aerobic E. coli data, while maintaining model fit. Thus, HCM-FBA is a promising alternative to HCM for large networks, where the generation of EMs is infeasible.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信