平面分层单轴介质中任意形状导电物体的混合势积分方程(MPIE)公式——新观点

IF 1.8 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Krzysztof A. Michalski
{"title":"平面分层单轴介质中任意形状导电物体的混合势积分方程(MPIE)公式——新观点","authors":"Krzysztof A. Michalski","doi":"10.1109/JMMCT.2023.3271290","DOIUrl":null,"url":null,"abstract":"A new, direct and succinct derivation is presented of the mixed-potential integral equation (MPIE) for arbitrarily shaped conducting objects in plane-stratified, multilayered, uniaxial media. The vector and scalar potential MPIE kernels are expressed in terms of the voltage and current Green functions of the spectral-domain transmission-line network analog of the medium along the axis perpendicular to the stratification.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":"8 ","pages":"225-232"},"PeriodicalIF":1.8000,"publicationDate":"2023-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mixed-Potential Integral Equation (MPIE) Formulation for Arbitrarily Shaped Conducting Objects in Plane-Stratified Uniaxial Media—A New Look\",\"authors\":\"Krzysztof A. Michalski\",\"doi\":\"10.1109/JMMCT.2023.3271290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new, direct and succinct derivation is presented of the mixed-potential integral equation (MPIE) for arbitrarily shaped conducting objects in plane-stratified, multilayered, uniaxial media. The vector and scalar potential MPIE kernels are expressed in terms of the voltage and current Green functions of the spectral-domain transmission-line network analog of the medium along the axis perpendicular to the stratification.\",\"PeriodicalId\":52176,\"journal\":{\"name\":\"IEEE Journal on Multiscale and Multiphysics Computational Techniques\",\"volume\":\"8 \",\"pages\":\"225-232\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal on Multiscale and Multiphysics Computational Techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10109800/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10109800/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

对平面分层、多层、单轴介质中任意形状导电物体的混合势积分方程提出了一种新的、直接的、简洁的推导方法。矢量和标量势MPIE核用介质沿垂直于分层轴的谱域传输在线网络模拟的电压和电流格林函数表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mixed-Potential Integral Equation (MPIE) Formulation for Arbitrarily Shaped Conducting Objects in Plane-Stratified Uniaxial Media—A New Look
A new, direct and succinct derivation is presented of the mixed-potential integral equation (MPIE) for arbitrarily shaped conducting objects in plane-stratified, multilayered, uniaxial media. The vector and scalar potential MPIE kernels are expressed in terms of the voltage and current Green functions of the spectral-domain transmission-line network analog of the medium along the axis perpendicular to the stratification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
27
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信