可压缩霍尔-磁流体动力学系统的最佳时间衰减率

IF 1.2 3区 数学 Q2 MATHEMATICS, APPLIED
Shengbin Fu, Weiwei Wang
{"title":"可压缩霍尔-磁流体动力学系统的最佳时间衰减率","authors":"Shengbin Fu,&nbsp;Weiwei Wang","doi":"10.1007/s00021-023-00820-9","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we are interested in the global well-posedness of the strong solutions to the Cauchy problem on the compressible magnetohydrodynamics system with Hall effect. Moreover, we establish the convergence rates of the above solutions trending towards the constant equilibrium <span>\\(({\\bar{\\rho }},0,\\bar{\\textbf{B}})\\)</span>, provided that the initial perturbation belonging to <span>\\(H^3({\\mathbb {R}}^3) \\cap B_{2, \\infty }^{-s}({\\mathbb {R}}^3)\\)</span> for <span>\\(s \\in (0,\\frac{3}{2}]\\)</span> is sufficiently small.</p></div>","PeriodicalId":649,"journal":{"name":"Journal of Mathematical Fluid Mechanics","volume":"25 4","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Optimal Temporal Decay Rates for Compressible Hall-magnetohydrodynamics System\",\"authors\":\"Shengbin Fu,&nbsp;Weiwei Wang\",\"doi\":\"10.1007/s00021-023-00820-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we are interested in the global well-posedness of the strong solutions to the Cauchy problem on the compressible magnetohydrodynamics system with Hall effect. Moreover, we establish the convergence rates of the above solutions trending towards the constant equilibrium <span>\\\\(({\\\\bar{\\\\rho }},0,\\\\bar{\\\\textbf{B}})\\\\)</span>, provided that the initial perturbation belonging to <span>\\\\(H^3({\\\\mathbb {R}}^3) \\\\cap B_{2, \\\\infty }^{-s}({\\\\mathbb {R}}^3)\\\\)</span> for <span>\\\\(s \\\\in (0,\\\\frac{3}{2}]\\\\)</span> is sufficiently small.</p></div>\",\"PeriodicalId\":649,\"journal\":{\"name\":\"Journal of Mathematical Fluid Mechanics\",\"volume\":\"25 4\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Fluid Mechanics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00021-023-00820-9\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Fluid Mechanics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00021-023-00820-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了具有霍尔效应的可压缩磁流体动力学系统的Cauchy问题强解的全局适定性。此外,我们还建立了上述解趋向于常平衡的收敛速率 \(({\bar{\rho }},0,\bar{\textbf{B}})\),则初始摄动属于 \(H^3({\mathbb {R}}^3) \cap B_{2, \infty }^{-s}({\mathbb {R}}^3)\) 为了 \(s \in (0,\frac{3}{2}]\) 足够小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Optimal Temporal Decay Rates for Compressible Hall-magnetohydrodynamics System

In this paper, we are interested in the global well-posedness of the strong solutions to the Cauchy problem on the compressible magnetohydrodynamics system with Hall effect. Moreover, we establish the convergence rates of the above solutions trending towards the constant equilibrium \(({\bar{\rho }},0,\bar{\textbf{B}})\), provided that the initial perturbation belonging to \(H^3({\mathbb {R}}^3) \cap B_{2, \infty }^{-s}({\mathbb {R}}^3)\) for \(s \in (0,\frac{3}{2}]\) is sufficiently small.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
15.40%
发文量
97
审稿时长
>12 weeks
期刊介绍: The Journal of Mathematical Fluid Mechanics (JMFM)is a forum for the publication of high-quality peer-reviewed papers on the mathematical theory of fluid mechanics, with special regards to the Navier-Stokes equations. As an important part of that, the journal encourages papers dealing with mathematical aspects of computational theory, as well as with applications in science and engineering. The journal also publishes in related areas of mathematics that have a direct bearing on the mathematical theory of fluid mechanics. All papers will be characterized by originality and mathematical rigor. For a paper to be accepted, it is not enough that it contains original results. In fact, results should be highly relevant to the mathematical theory of fluid mechanics, and meet a wide readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信