利用FDTD和物理信息神经网络进行电磁热分析

IF 1.8 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Shutong Qi;Costas D. Sarris
{"title":"利用FDTD和物理信息神经网络进行电磁热分析","authors":"Shutong Qi;Costas D. Sarris","doi":"10.1109/JMMCT.2023.3236946","DOIUrl":null,"url":null,"abstract":"This article presents the coupling of the finite-difference time-domain (FDTD) method for electromagnetic field simulation, with a physics-informed neural network based solver for the heat equation. To this end, we employ a physics-informed U-Net instead of a numerical method to solve the heat equation. This approach enables the solution of general multiphysics problems with a single-physics numerical solver coupled with a neural network, overcoming the questions of accuracy and efficiency that are associated with interfacing multiphysics equations. By embedding the heat equation and its boundary conditions in the U-Net, we implement an unsupervised training methodology, which does not require the generation of ground-truth data. We test the proposed method with general 2-D coupled electromagnetic-thermal problems, demonstrating its accuracy and efficiency compared to standard finite-difference based alternatives.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":"8 ","pages":"49-59"},"PeriodicalIF":1.8000,"publicationDate":"2023-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Electromagnetic-Thermal Analysis With FDTD and Physics-Informed Neural Networks\",\"authors\":\"Shutong Qi;Costas D. Sarris\",\"doi\":\"10.1109/JMMCT.2023.3236946\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents the coupling of the finite-difference time-domain (FDTD) method for electromagnetic field simulation, with a physics-informed neural network based solver for the heat equation. To this end, we employ a physics-informed U-Net instead of a numerical method to solve the heat equation. This approach enables the solution of general multiphysics problems with a single-physics numerical solver coupled with a neural network, overcoming the questions of accuracy and efficiency that are associated with interfacing multiphysics equations. By embedding the heat equation and its boundary conditions in the U-Net, we implement an unsupervised training methodology, which does not require the generation of ground-truth data. We test the proposed method with general 2-D coupled electromagnetic-thermal problems, demonstrating its accuracy and efficiency compared to standard finite-difference based alternatives.\",\"PeriodicalId\":52176,\"journal\":{\"name\":\"IEEE Journal on Multiscale and Multiphysics Computational Techniques\",\"volume\":\"8 \",\"pages\":\"49-59\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal on Multiscale and Multiphysics Computational Techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10017131/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10017131/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 2

摘要

本文介绍了电磁场模拟的时域有限差分(FDTD)方法与基于物理信息的神经网络热方程求解器的耦合。为此,我们采用了基于物理的U-Net方法,而不是数值方法来求解热方程。这种方法能够通过与神经网络耦合的单个物理数值求解器来解决一般的多物理问题,克服了与多物理方程接口相关的精度和效率问题。通过将热方程及其边界条件嵌入U-Net,我们实现了一种无监督的训练方法,该方法不需要生成地面实况数据。我们将所提出的方法与一般的二维耦合电磁热问题进行了测试,与基于标准有限差分的替代方法相比,证明了其准确性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electromagnetic-Thermal Analysis With FDTD and Physics-Informed Neural Networks
This article presents the coupling of the finite-difference time-domain (FDTD) method for electromagnetic field simulation, with a physics-informed neural network based solver for the heat equation. To this end, we employ a physics-informed U-Net instead of a numerical method to solve the heat equation. This approach enables the solution of general multiphysics problems with a single-physics numerical solver coupled with a neural network, overcoming the questions of accuracy and efficiency that are associated with interfacing multiphysics equations. By embedding the heat equation and its boundary conditions in the U-Net, we implement an unsupervised training methodology, which does not require the generation of ground-truth data. We test the proposed method with general 2-D coupled electromagnetic-thermal problems, demonstrating its accuracy and efficiency compared to standard finite-difference based alternatives.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
27
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信