{"title":"考虑近场耦合的基于深度学习的元表面设计方法","authors":"Mengmeng Li;Yuchenxi Zhang;Zixuan Ma","doi":"10.1109/JMMCT.2023.3237699","DOIUrl":null,"url":null,"abstract":"Planar metasurfaces have been applied in several fields. Near-field coupling is typically neglected in traditional metasurface designs. A numerical modeling method for macrocells that considers near-field couplings between meta-atoms is proposed. A deep neural network (DNN) is constructed to accurately predict the electromagnetic response from different macrocells. Transfer learning is employed to reduce the number of the training datasets. The designed neural network is embedded in the optimization algorithm as an effective surrogate model. Both the deflector and high numerical aperture (NA) metalens are simulated and optimized with our design framework, approximately 30% improvements of efficiencies are achieved.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":"8 ","pages":"40-48"},"PeriodicalIF":1.8000,"publicationDate":"2023-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Deep-Learning-Based Metasurface Design Method Considering Near-Field Couplings\",\"authors\":\"Mengmeng Li;Yuchenxi Zhang;Zixuan Ma\",\"doi\":\"10.1109/JMMCT.2023.3237699\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Planar metasurfaces have been applied in several fields. Near-field coupling is typically neglected in traditional metasurface designs. A numerical modeling method for macrocells that considers near-field couplings between meta-atoms is proposed. A deep neural network (DNN) is constructed to accurately predict the electromagnetic response from different macrocells. Transfer learning is employed to reduce the number of the training datasets. The designed neural network is embedded in the optimization algorithm as an effective surrogate model. Both the deflector and high numerical aperture (NA) metalens are simulated and optimized with our design framework, approximately 30% improvements of efficiencies are achieved.\",\"PeriodicalId\":52176,\"journal\":{\"name\":\"IEEE Journal on Multiscale and Multiphysics Computational Techniques\",\"volume\":\"8 \",\"pages\":\"40-48\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal on Multiscale and Multiphysics Computational Techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10018880/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10018880/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Planar metasurfaces have been applied in several fields. Near-field coupling is typically neglected in traditional metasurface designs. A numerical modeling method for macrocells that considers near-field couplings between meta-atoms is proposed. A deep neural network (DNN) is constructed to accurately predict the electromagnetic response from different macrocells. Transfer learning is employed to reduce the number of the training datasets. The designed neural network is embedded in the optimization algorithm as an effective surrogate model. Both the deflector and high numerical aperture (NA) metalens are simulated and optimized with our design framework, approximately 30% improvements of efficiencies are achieved.