{"title":"面向大密钥工作负载的高性能、高持久键值SSD设计","authors":"Chanyoung Park;Chun-Yi Liu;Kyungtae Kang;Mahmut Kandemir;Wonil Choi","doi":"10.1109/LCA.2023.3282276","DOIUrl":null,"url":null,"abstract":"Current KV-SSD design assumes a specific range of typical workloads, where the size of values is quite large while that of keys is relatively small. However, we find that (i) there exist another spectrum of workloads, whose key sizes are relatively large, compared to their value sizes, and (ii) the current KV-SSD design suffers from long tail latencies and low storage utilization under such large-key workloads. To this end, we present novel design of a KV-SSD (called LK-SSD), which can reduce tail latences and increase storage utilization under large-key workloads, and add an enhancement to it for longer device lifetime. Through extensive experiments, we show that LK-SSD is more suitable design for the large-key workloads, and also available for the typical workloads.","PeriodicalId":51248,"journal":{"name":"IEEE Computer Architecture Letters","volume":"22 2","pages":"149-152"},"PeriodicalIF":1.4000,"publicationDate":"2023-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of a High-Performance, High-Endurance Key-Value SSD for Large-Key Workloads\",\"authors\":\"Chanyoung Park;Chun-Yi Liu;Kyungtae Kang;Mahmut Kandemir;Wonil Choi\",\"doi\":\"10.1109/LCA.2023.3282276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current KV-SSD design assumes a specific range of typical workloads, where the size of values is quite large while that of keys is relatively small. However, we find that (i) there exist another spectrum of workloads, whose key sizes are relatively large, compared to their value sizes, and (ii) the current KV-SSD design suffers from long tail latencies and low storage utilization under such large-key workloads. To this end, we present novel design of a KV-SSD (called LK-SSD), which can reduce tail latences and increase storage utilization under large-key workloads, and add an enhancement to it for longer device lifetime. Through extensive experiments, we show that LK-SSD is more suitable design for the large-key workloads, and also available for the typical workloads.\",\"PeriodicalId\":51248,\"journal\":{\"name\":\"IEEE Computer Architecture Letters\",\"volume\":\"22 2\",\"pages\":\"149-152\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Computer Architecture Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10143084/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Computer Architecture Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10143084/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Design of a High-Performance, High-Endurance Key-Value SSD for Large-Key Workloads
Current KV-SSD design assumes a specific range of typical workloads, where the size of values is quite large while that of keys is relatively small. However, we find that (i) there exist another spectrum of workloads, whose key sizes are relatively large, compared to their value sizes, and (ii) the current KV-SSD design suffers from long tail latencies and low storage utilization under such large-key workloads. To this end, we present novel design of a KV-SSD (called LK-SSD), which can reduce tail latences and increase storage utilization under large-key workloads, and add an enhancement to it for longer device lifetime. Through extensive experiments, we show that LK-SSD is more suitable design for the large-key workloads, and also available for the typical workloads.
期刊介绍:
IEEE Computer Architecture Letters is a rigorously peer-reviewed forum for publishing early, high-impact results in the areas of uni- and multiprocessor computer systems, computer architecture, microarchitecture, workload characterization, performance evaluation and simulation techniques, and power-aware computing. Submissions are welcomed on any topic in computer architecture, especially but not limited to: microprocessor and multiprocessor systems, microarchitecture and ILP processors, workload characterization, performance evaluation and simulation techniques, compiler-hardware and operating system-hardware interactions, interconnect architectures, memory and cache systems, power and thermal issues at the architecture level, I/O architectures and techniques, independent validation of previously published results, analysis of unsuccessful techniques, domain-specific processor architectures (e.g., embedded, graphics, network, etc.), real-time and high-availability architectures, reconfigurable systems.